
The structure of call-by-value

Carsten Führmann

Doctor of Philosophy

University of Edinburgh

2000



To my parents



Abstract
Understanding procedure calls is crucial in computer science and everyday pro-

gramming. Among the most common strategies for passing procedure argu-

ments (‘evaluation strategies’) are ‘call-by-name’, ‘call-by-need’, and ‘call-by-

value’, where the latter is the most commonly used. While reasoning about

procedure calls is simple for call-by-name, problems arise for call-by-need and

call-by-value, because it matters how often and in which order the arguments of

a procedure are evaluated.

We shall classify these problems and see that all of them occur for call-by-

value, some occur for call-by-need, and none occur for call-by-name. In that

sense, call-by-value is the ‘greatest common denominator’ of the three evaluation

strategies.

Reasoning about call-by-value programs has been tackled by Eugenio Moggi’s

‘computational lambda-calculus’, which is based on a distinction between ‘values’

and arbitrary expressions. However, the computational lambda-calculus deals

only implicitly with the evaluation order and the number of evaluations of pro-

cedure arguments. Therefore, certain program equivalences that we should be

able to spot immediately require long proofs. We shall remedy this by introduc-

ing a new calculus—the ‘let-calculus’—that deals explicitly with evaluation order

and the number of evaluations. For dealing with the number of evaluations, the

let-calculus has mechanisms known from linear, affine, and relevant logic. For

dealing with evaluation order, it has a mechanism which seems to be completely

new.

We shall also introduce a new kind of denotational semantics for call-by-value

programming languages. The key idea is to consider how categories with finite

products are commonly used to model call-by-name languages, and remove the

axioms which break for call-by-value. The resulting models we shall call ‘precarte-

sian categories’. These relatively simple structures have remarkable mathematical

properties, which will inspire the design of the let-calculus.

Precartesian categories will provide a semantics of both the let-calculus and

the computational lambda-calculus. This semantics not only validates the same

program equivalences as Moggi’s monad-based semantics of the computational

lambda-calculus; It is also ‘direct’ by contrast to Moggi’s semantics, which implic-

itly performs a language transform. Our direct semantics has practical benefits:



It clarifies issues that are related with the evaluation order and the number of

evaluations of procedure arguments, and it is also very easy to remember.

The thesis is rounded up by three applications of the let-calculus and pre-

cartesian categories: First, construing well-established models of partiality (i.e.

categories of generalised partial functions) as precartesian categories, and special-

ising the let-calculus accordingly. Second, adding global state to a given compu-

tational system and construing the resulting system as a precartesian category.

Third, analysing an implementation technique called ‘continuation-style trans-

form’ by construing the source language of such a transform as a precartesian

category.
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Chapter 1

Introduction

1.1 Procedure calls and equational reasoning

Almost every programming language has procedures that accept zero, one, or

more arguments. Some procedures are part of the language itself, like the two-

argument +, some are provided by libraries, like printf in C, and new procedures

may be defined by the user. Understanding procedure calls is obviously crucial in

computer science and everyday programming. At a first glance, reasoning about

procedure calls seems simple. Deceptively so, because it matters how often and

in which order the arguments of a procedure are evaluated.

1.1.1 Number of evaluations

For example, compare the procedures p1 and p2 in the following piece of JAVA

code, where p is a given procedure that accepts and integer and returns an inte-

ger1.

Example 1.1 (JAVA).

int p1(int x) { return q(p(x)); }

int q(int y) { return y+y; }

int p2(int x) { return p(x)+p(x); }

One might be misled to conclude that p1 and p2 behave in the same way. Now

suppose that the definition of p is

int p(int x) { print("hello!"); return x; }

Given an argument n, both p1 and p2 return the value 2n. However, p1 prints

”hello!” once, whereas p2 prints ”hello!” twice: In the body of p1, p(x) is

1print is supposed to be defined in terms of System.out.print in the obvious way
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evaluated once (before the call of q), and in the body of p2, p(x) is evaluated

twice (before the call of +). This is so because JAVA’s evaluation strategy (for

arguments of basic types like int and bool) is call-by-value—that is, before each

procedure call, all arguments are evaluated2.

If the evaluation strategy was call-by-need, then p1 and p2 would behave like

in the call-by-value case, but for different reasons: p(x) would not be evaluated

before it is passed to q. However, the side effect would happen when the first y

is evaluated, and not for the second y. In p2, the side effect would occur twice

because there is no sharing between the two copies of p(x).

If the evaluation strategy was call-by-name, p1 and p2 would behave the same,

because passing p(x) to q can be seen as the formal substitution of p(x) for y.

We can write counterparts of p1 and p2 in almost every programming

language—their behaviours depend only on the evaluation strategy. In Stan-

dard ML (SML), for example, we can eliminate the procedure q to get a more

elegant version of Example 1.1:

Example 1.2 (SML).

fun p x = (print "hello!"; x);

fun p1 x = (let val y = (p x) in y+y end);

fun p2 x = (p x)+(p x);

Because SML is call-by-value, the behaviours of p1 and p2 differ like in the

JAVA case. Minor changes would give us an example in LISP or SCHEME.

The reason for the different behaviours of p1 and p2 lies in how often p is

evaluated—once or twice. We can change our examples in such a way that p is

evaluated once and not at all, respectively:

Example 1.3 (JAVA).

int p1(int x) { return q(p(x)); }

int q(int y) { return 0; }

int p2(int x) { return 0; }

The SML counterpart is

Example 1.4 (SML).

fun p1 x = (let val y = (p x) in 0 end);

fun p2 x = 0;

2For arguments denoting class instances, JAVA’s evaluation strategy is call by reference, but
that does not concern us here.
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With the previous definition of the procedure p, given any argument n, p1

prints ”hello!” once and p2 prints ”hello!” not at all.

If the evaluation strategy was call-by-name, neither p1 nor p2 would print

”hello!”. Unlike in Example 1.1, call-by-need now behaves like call-by-name

rather than call-by-value.

1.1.2 Evaluation order

The failures of substitution we have seen so far have to do with the number of

evaluations of a procedure argument. There is also a different aspect that can

cause a failure of substitution. Consider the following SML example:

Example 1.5 (SML).

fun q1 x = (print "1"; x);

fun q2 x = (print "2"; x);

fun p1 x = (let val y1 = (q1 x) in

let val y2 = (q2 x) in x*y1+y2 end end);

fun p2 x = (let val y2 = (q2 x) in

let val y1 = (q1 x) in x*y1+y2 end end);

Given an argument n, both p1 and p2 return the value n2 + n, but p1 prints

”12”, whereas p2 prints ”21”. The JAVA version of the example requires auxiliary

procedures h1 and h2:

Example 1.6 (JAVA).

int p1(int x) { return h1(q1(x),x); }

int h1(int y1,int x) { return q(x,y1,q2(x)); }

int p2(int x) { return h2(x,q2(x)); }

int h2(int x,int y2) { return q(x,q1(x),y2); }

int q(int x,int y1,int y2) { return x*y1+y2; }

int q1(int x) { print("1"); return x; }

int q2(int x) { print("2"); return x; }

Here the different behaviour of p1 and p2 is due to the evaluation order of

the arguments of q. For p1, the argument q1(x) is evaluated before q2(x),

and for p2 it is the other way round. In JAVA and SML, it so happens that

8



p1(x) is equivalent to x*q1(x)+q2(x)—however, this is only so because these

two languages choose to evaluate the arguments of + from left to right.

In the cases of call-by-name and call-by-need, p1 and p2 would behave the

same.

1.1.3 Consequences

Let’s summarise the three examples from the preceding sections, using a succinct

notation which is an idealisation of the SML syntax: For fitting expressions M

and N we may have the observational inequalities

(let y = M in y + y) 6≡ M +M

(let y = M in 0) 6≡ 0

and

(let y1 = M1 in let y2 = M2 in x ∗ y1 + y2)

6≡(let y2 = M2 in let y1 = M1 in x ∗ y1 + y2)

Each of the three inequalities shows that the equation

(let x = M in N) ≡ N [x := M ] (let.β)

can be observationally false (as usual, N [y := M ] stands for the expression that

results from replacing all free occurrences of y in N by M , avoiding variable

capture). Accepting call-by-value as a reasonable evaluation strategy, we must

forbid the unrestricted use of Equation (let.β).

Here it is important to keep in mind that in this discussion (let x = M inN)

simply means that M is passed as an actual parameter to the a procedure

with body N and formal parameter x. For example, in JAVA the expression

(let y = 42 in x + y) would stand for an expression p(x,42), assuming a proce-

dure definition

int p(int x,int y) { return x+y; }

(In particular, (let x = M inN) does not force that the evaluation of M if the

evaluation strategy is call-by-need or call-by-name.) So the meaning of Equation

(let.β) is defined for almost every programming language, even if the let-construct

is not part of the actual syntax, and independently of the evaluation strategy.

That substituting arbitrary expressions for variables can be unsound has been

known for a long time. In particular, for call-by-value, the β-rule

(λx.M)N ≡ N [x := M ] (β)
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of the lambda-calculus has been changed into the rule (βv) by requiring that N be

a value—that is, an expression which is deemed to be already evaluated [Plo75].

In fact, in the presence of a lambda-operator, our expression (let x = N inM) is

just another way of writing (λx.M)N . However, we avoid the lambda-operator

in this foundational discussion, because most programming languages don’t have

functions as first-class citizens.

1.2 Empirically correct calculi

1.2.1 The computational lambda-calculus

Eugenio Moggi introduced the computational lambda-calculus (also called ‘λC-

calculus’), which, according to the abstract of [Mog88]

provides a correct basis for proving equivalence of programs, indepen-
dent from any specific computational model.

This claim seems empirically true (we shall discuss this some more in Section 3.4).

The computational lambda-calculus has sequents (Γ ⊢M : A) where Γ is an envi-

ronment—that is, a finite, non-repetitive list of typed variables, M is a program

expression whose free variables are contained in Γ, and A is the type of M . The

term formation rules are presented in Figures 1.1–1.3. We can think of the

unusual type TA as unit ⇀ A, of [M ] as λx : unit .M (where x is fresh), and of

µ(M) as the function application M(). (We shall discuss these monadic operators

some more in Remark 5.6.) The computational lambda-calculus has two kinds

of judgements: Equations of the form (Γ ⊢ M ≡ N : A), and judgements of the

form (Γ ⊢ M ↓ A) (where (Γ ⊢ M : A) and (Γ ⊢ N : A) are derivable sequents).

A judgement (Γ ⊢ M ↓ A) states that M is a value (Moggi says ‘M exists’).

Values can be substituted in all judgements for any free variable x of the same

type. The derivation rules of the computational lambda-calculus are presented in

Figure 1.4.

1.2.2 Linear, affine, relevant, and more

Observational inequalities like

(let y = M in y + y) 6≡ M +M

(let y = M in 0) 6≡ 0

and observational equalities like

(let y = M in y) ≡ M

10



var x1 : A1, . . . , xn : An ⊢ xi : Ai

let
Γ ⊢M : A Γ, x : A ⊢ N : B

Γ ⊢ let x = M inN : B

* Γ ⊢ () : unit

(−,−)
Γ ⊢M : A Γ ⊢ N : B

Γ ⊢ (M,N) : A ∗B

πi
Γ ⊢M : A1 ∗A2

Γ ⊢ πi(M) : Ai

constant f : A1, . . . , An - B
Γ ⊢M1 : A1 . . . Γ ⊢Mn : An

Γ ⊢ f(M1, . . . ,Mn) : B

Figure 1.1: First-order fragment of the computational lambda-calculus (with mi-
nor syntactic changes)

λ
Γ, x : A ⊢M : B

Γ ⊢ λx : A.M : A ⇀ B

app
Γ ⊢M : A ⇀ B Γ ⊢ N : A

Γ ⊢MN : B

Figure 1.2: Higher-order fragment of the computational lambda-calculus

11



[−]
Γ ⊢M : A

Γ ⊢ [M ] : TA

µ
Γ ⊢M : TA

Γ ⊢ µ(M) : A

Figure 1.3: Monadic fragment of the computational lambda-calculus

≡ is a congruence

Γ ⊢ x ↓ A Γ ⊢ () ↓ unit Γ ⊢ (x1, x2) ↓ A1 ∗ A2

Γ ⊢ πi(x) ↓ Ai Γ ⊢ [M ] ↓ TA Γ ⊢ λx : A.M ↓ A ⇀ B

Γ ⊢ M ↓ A Γ, x : A ⊢ J
where J is a judgement

Γ ⊢ J [x := M ]

Γ ⊢ (let x = M in x) ≡ M : A
Γ ⊢ (let x2 = (let x1 = M1 in M2) in M) ≡ (let x1 = M1 in (let x2 = M2 in M)) : A
Γ ⊢ (let x1 = x2 in M) ≡ M [x1 := x2] : A
Γ ⊢ f(M1, . . . ,Mn) ≡ (let x1 = M1 in . . . let xn = Mn in f(x1, . . . , xn)) : A
Γ ⊢ µ([M ]) ≡ M : A
Γ ⊢ [µ(x)] ≡ x : TA
Γ ⊢ () ≡ x : unit

Γ ⊢ (M1,M2) ≡ (let x1 = M1 in let x2 = M2 in (x1, x2)) : A1 ∗ A2

Γ ⊢ π1((x1, x2)) ≡ xi : Ai

Γ ⊢ (π1(x), π2(x)) ≡ x : A1 ∗ A2

Γ ⊢ (λx1 : A1.M2)(x1) ≡ M2 : A2

Γ ⊢ λx1 : A1.x(x1) ≡ x : A1 ⇀ A2

Figure 1.4: Derivation rules of the computational lambda-calculus
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show that whether we can substitute expressions for a variable y depends on the

number of free occurrences of y. The expression y+ y is relevant in y—that is, y

occurs at least once, but it is not linear in y—that is, y does not occur exactly

once. The expression 0 is affine in y—that is, y occurs at most once—but it too

is not linear. So non-linearity obstructs substitution.

Although the computational lambda-calculus seems to prove the right equa-

tions, it has no explicit account for the number of variable occurrences.

In this thesis, we shall see that, with a certain restriction, if an expression M

is copyable in that

(let y = M in (y, y)) ≡ (M,M) (1.1)

then the equation

(let y = M in N) ≡ N [y := M ] (let.β)

holds whenever N is relevant in y. We shall also see that, with the same restric-

tion, Equation (let.β) holds whenever M is discardable in that

(let y = M in ()) ≡ () (1.2)

and N is affine in y. The restriction comes from the fact that evaluation order

also matters. For example, we may have the observational inequality

(let y1 = M1 in let y2 = M2 in x ∗ y1 + y2)

6≡(let y2 = M2 in let y1 = M1 in x ∗ y1 + y2)

although y1 and y2 occur linear in x∗y1 +y2. We shall see that if N is linear in y,

then Equation (let.β) holds if M is central in that for all sequents (Γ′ ⊢M ′ : A′)

such that Γ and Γ′ share no variables, it holds that

Γ,Γ′ ⊢(let y = M in let y′ = M ′ in (y, y′))

≡(let y′ = M ′ in let y = M in (y, y′)) : A ∗ A′
(1.3)

In this thesis, we shall introduce a new calculus for proving program

equivalences—the let-calculus—which is based on counting the number of oc-

currences of free variables and considering an extra property of variables which

is related with centrality. The expressions of the let-calculus agree with the

first-order fragment of the computational lambda-calculus. By contrast, the new

derivation rules for program equalities will enable us to see immediately program

equivalences that would take a long proof in the computational lambda-calculus.

The vocabulary that comes with the let-calculus (‘relevant’, ‘affine’, ‘copyable’,

‘discardable’, ‘central’, and more) seems to be a real help in discussing realistic

programs.
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1.3 Denotational semantics of procedure calls

1.3.1 Failure of the näıve semantics

The first-order fragment of the computational lambda-calculus clearly inspires a

semantics in a category with finite products. Here we shall describe this näıve

semantics and show why it fails. The type- and term-formation rules dictate how

to use the categorical structure: The semantics of types is

[[A ∗B]] = [[A]] × [[B]]

[[unit ]] = 1

where × is the cartesian product, and 1 is the terminal object. Following common

practice, the semantics of a sequent (x1 : A1, . . . , xn : An ⊢M : A) is a morphism

A1 × · · · ×An
f- A

(For convenience, we simply write Ai for [[Ai]].) The semantics of first-order

expressions is presented in Figure 1.5. The failure of this semantics has to do with

the observational falsity of the equations 1.1, 1.2, and 1.3. A routine proof shows

that the left side and the right side of Equation 1.1 denote the left-bottom and

the top-right path, respectively, of the following diagram (where δ : A - A×A

is the diagonal 〈idA, idA〉):

Γ
δ- Γ × Γ

A

f

? δ- A× A

f × f

?

(1.4)

In a category with finite products this diagram commutes, so the model identi-

fies expressions that may behave differently. The left side and the right side of

Equation 1.2 denote the left-bottom and the top-right path, respectively, of the

following diagram

Γ
! - I

A

f

? ! - I

‖ (1.5)

Again, this always holds in a category with finite products, but may be false for

the program behaviour. As for Equation 1.3, let f ′ : Γ′ - A′ be the denotation

14



Rule Syntax Semantics

var

x1 : A1, . . . , xn : An ⊢ xi : Ai = A1 × · · · × An
πi- Ai

let

Γ ⊢ M : A = Γ
f- A

Γ, x : A ⊢ N : B = Γ × A
g- B

Γ ⊢ let x = M in N : B = Γ
〈id ,f〉- Γ × A

g- B

() Γ ⊢ () : unit = Γ
!- 1

(−,−)

Γ ⊢ M : A = Γ
f- A

Γ ⊢ N : B = Γ
g- B

Γ ⊢ (M,N) : A ∗ B = Γ
〈f,g〉- A × B

πi

Γ ⊢ M : A1 ∗ A2 = Γ
f- A1 × A2

Γ ⊢ πi(M) : Ai = Γ
f- A1 × A2

πi- Ai

f : A1, . . . , An
- B

Γ ⊢ Mi : A = Γ
gi- Ai

Γ ⊢ f(M1, . . . ,Mn) : B = Γ
〈g1,...,gn〉- A1 × · · · × An
f- B

Figure 1.5: Naive semantics of the let-language
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of (Γ′ ⊢ M ′ : A′). A routine proof shows that the two sides of Equation 1.3

denote the top-right path and the left-bottom path, respectively, of the following

diagram:

Γ × Γ′ f × Γ′
- A× Γ′

Γ × A′

Γ × f ′

? f ×A′
- A× A′

A× f ′

?

(1.6)

This diagram too commutes in every category with finite products, so again the

model identifies expressions that may behave differently.

So categories with finite products are too crude for modelling some program-

ming languages (if we assume the straightforward semantics in Figure 1.5). In

Chapter 2, we shall tackle this problem by introducing a generalisation of cate-

gories with finite products such that Diagrams 1.4, 1.5, and 1.6 need no longer

commute.

1.3.2 Monadic semantics

A semantics of the computational lambda-calculus that avoids the problems de-

scribed in the previous section is given by Eugenio Moggi’s ‘computational mod-

els’. In a realistic case, such a model is based on a category with finite prod-

ucts. By contrast to the näıve semantics of the previous section, a sequent

(x1 : A1, . . . , xn : An ⊢M : B) denotes a morphism

A1 × · · · × An
f- TB

where the Ai are objects of values of type Ai, and TB is the object of computations

of type B. In Moggi’s own words [Mog88]:

There are many possible choices for TB corresponding to different
notions of computations, for instance in the category of sets the set
of partial computations (of type B) is the lifting B+ {⊥} and the set
of non-deterministic computations is the powerset P(B).

Attempting to identify the general properties that the object TB of computations

must have, Moggi employed structures from category theory called monads. A

monad T = (T, η, µ) in a category C consists of a functor T : C - C and two

natural transformations

η : IdC - T, µ : T 2 - T
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(the unit and multiplication of the monad) which make certain diagrams com-

mute. Moggi’s computational models also require a strength, which is a natural

transformation

tA,B : A× TB - T (A×B)

that satisfies certain equations. (A monad together with a strength is called a

strong monad.) Moggi’s semantics employs a category C with finite products,

together with a strong monad T in C. This semantics is often given by induc-

tively assigning to a sequent (Γ ⊢M : A) a morphism Γ - TA of C. However,

we shall now use a neat alternative, which emphasises a conceptually important

point. Because C is a category with finite products, we can use the first-order

fragment of the computational lambda-calculus to denote morphisms of C ac-

cording to the näıve semantics in Figure 1.5. We describe the ‘real’ semantics of

the computational lambda-calculus by a language transform—the monadic-style

transform (MS transform)—that sends each sequent (Γ ⊢ M : A) to a sequent

(Γ ⊢M ♯ : TA) which is to be interpreted in C. It is important to see that, despite

having the same syntax, the transform’s source language and target language dif-

fer conceptually in the same way as the source language and the target language of

a real-life compiler. The categorical semantics of the source language is given by

the transform (−)♯, followed by the categorical semantics of the target-language

in C.

Because the semantics uses the strong monad T in C, the target language

needs extra syntax. A nice way to add this is the bind-construct :

Rule Syntax Semantics

bind

Γ ⊢M : TA = Γ
f- TA

Γ, x : A ⊢ N : TB = Γ × A
g- TB

Γ ⊢ bind x⇐M in N : TB = Γ
〈id ,f〉- Γ × TA

t- T (Γ × A)
Tg- TTB

µ- TB

Intuitively, if M is an expression of type TA and x is a variable of type A, then

(bind x ⇐ M in N) forces the evaluation of M and binds the resulting value, if

any, to x. The unit η of the monad ‘wraps up’ a value as a computation3.

The transform (−)♯ for the first-order expressions of the computational

lambda-calculus is presented in Figure 1.6.

3Originally, Moggi used the word ‘let ’ instead of ‘bind ’, so ‘let ’ appeared in two different
term formation rules. We use ‘bind ’ to rule out any confusion.
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x♯ = η(x)
(let x = M inN)♯ =

(
bind x⇐ M ♯ inN ♯

)

()♯ = η()
(M,N)♯ =

(
bind x⇐ M ♯ in bind y ⇐ N ♯ in η(x, y)

)

(πi(M))♯ =
(
bind x⇐ M ♯ in η(πi(x))

)

(f(M1, . . . ,Mn))
♯ =

(

bind x1 ⇐M ♯
1 in . . . bind xn ⇐M ♯

n in f(x1, . . . , xn)
)

Figure 1.6: Monadic-style (MS) transform

Languages Categories

direct-style
Computational
lambda-calculus

- X

monadic-style
Language with
bind

MS
trans-
form

?

- λC-models
?-

Figure 1.7: The missing direct models, marked by X

1.3.3 The missing direct semantics

The näıve semantics in Figure 1.5 assigns to a sequent (x1 : A1, . . . , xn : An ⊢

M : B) a morphism A1 × · · · × An - B, but it validates too many equations.

By contrast, Moggi’s finer-grained semantics assigns to the sequent a morphism

A1 × · · · ×An - TB, at the cost of employing a language transform (whether

made explicit or not). Conceptually, Moggi’s computational model provides the

semantics of the target language of that transform. We do not seem to have a

sufficiently fine-grained direct semantics of the computational lambda-calculus.

The situation is depicted in Figure 1.7. The diagonal of Diagram 1.7 is the

denotational semantics of the computational lambda-calculus which is usually

presented. The bottom horizontal arrow is the direct semantics of the language
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with the bind-construct. What is missing is a class of categorical models X

that provides a direct semantics (depicted by the dashed horizontal arrow) of

the computational lambda-calculus—that is, a semantics that sends a sequent

(x1 : A1, . . . , xn : An ⊢ M : B) to a morphism A1 × · · · × An - B. If we

had such a semantics, there should be a semantic counterpart (depicted by the

vertical dashed arrow) of the monadic-style transform.

In this thesis we shall introduce the missing class X of direct models. We

shall find X by generalising categories with finite products in such a way that

the problematic equations 1.4, 1.5, and 1.6 need no longer hold. We shall call the

new class of models precartesian categories. A crucial point is that precartesian

categories, while validating the same program equivalences as Moggi’s semantics,

are conceptually simpler and open remarkable new ways of discussing realistic

computer programs. At the core of our analysis will stand notions like copyability,

discardability, and centrality, which correspond to the program equivalences 1.1,

1.2, and 1.3.

1.4 Related work

Premonoidal categories and Freyd categories Vital for this thesis was

the discovery of premonoidal categories by John Power and Edmund Robin-

son [PR97]. Premonoidal categories are a generalisation of monoidal categories

in that the tensor need not be functorial in both arguments jointly. This implies

abandoning the problematic Equation 1.6, allowing direct categorical models that

respect inequalities caused by evaluation order. Roughly speaking, precartesian

categories, which we shall define in this thesis, are premonoidal categories with

generalised pairing and projections. So, in some sense, premonoidal categories are

to monoidal categories what precartesian categories are to categories with finite

products.

As computational models, Power and Thielecke introduced Freyd cate-

gories [PT99]. A Freyd category consists of two categories—a premonoidal cate-

gory for modelling all expressions, and a category with finite products for mod-

elling values only. (The definition of Freyd categories is part of Section 2.6.)

Freyd categories are close relatives of precartesian categories—the main difference

is that a precartesian category is really just one category. Conceptually, using

precartesian categories instead of Freyd categories corresponds to abandoning a

syntactic notion of value (see Section 2.6).
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κ-categories The categorical models that we shall introduce in this thesis take

each sequent (Γ ⊢ M : A) to a morphism Γ - A in some category with extra

structure. There is a second approach, which is based on indexed categories

with extra structure (for an application to type theory, see [Jac91]). The slogan

is that environments Γ are indices for the categories in which the expressions

definable in Γ are modelled: An expression of type A in an environment Γ is

modelled by an element 1 - A in the fibre of the indexed category over Γ. For

modelling call-by-value, Power and Thielecke [PT99] consider a weak version of

indexed category with extra structure, called a κ-category, which is implicit in

some earlier work of Masahito Hasegawa [Has95]. As the main result in [PT99],

Power and Thielecke proved that there is an equivalence between the category

of κ-categories and the category of Freyd categories. Thus the two fundamental

ways of modelling programming languages are closely related. While I consider

indexed models to be important, they do not occur in this thesis, because I did

not want to overload it.

Categorical models of continuations My work on this thesis started

with studying Hayo Thielecke’s ⊗¬-categories (‘tensor-not-categories’) [Thi97a,

Thi97b]. With hindsight, these are precartesian categories with extra structure

that model the source language of a call-by-value CPS transform (CPS stands

for ‘continuation-passing style’). I obtained precartesian categories by extracting

from ⊗¬-categories those features that are not specific to continuations. We shall

discuss the CPS transform and precartesian models of continuations in Chapter 8.

Models of partiality With hindsight, many well-known models of partiality

are special precartesian categories: Concrete examples are categories of sets and

partial functions, pointed cpo’s and strict continuous functions, and so on. These

form precartesian categories such that every morphism is central and copyable (i.e.

Equations 1.6 and 1.4 hold). The total maps coincide with the discardable maps

(i.e. those that satisfy Equation 1.5). Abstract definitions of such special pre-

cartesian categories have been given again and again: pre-dht-categories [Hoe77],

p-categories [Ros86], copy categories (Cockett), g-monoidal categories [CG99].

According to Robinson and Rosolini [RR88], Curien and Obtulowicz [CO86] de-

fined ‘precartesian categories’, which are equivalent to Rosolini’s p-categories with

a ‘one-element object’ (i.e. a tensor unit which is terminal in the subcategory of

total maps). I used the name ‘precartesian category’ before I heard of this. Luck-

ily, p-categories with a one-element object are a special case of our precartesian

categories, as we shall see in Chapter 4, so my unintended re-definition of pre-
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cartesian categories is benign.

We shall discuss models of partiality as special precartesian categories in Chap-

ter 4.

Effect systems In the effect-systems literature, the effect of a program is a

description of the program’s non-functional behaviour: ”Just as types describe

what expressions compute, effects describe how expressions compute” [JG91].

Typically, effect systems have judgements like

Γ ⊢M : A !E

where Γ is an environment, M is an expression, A is the type of M , and E is the

effect of M (e.g. E = pure if M is effect free, or E = write if M writes to the

store). Like for types, there are rules for effect inference, for example

Γ ⊢M : A !E Γ ⊢ N : B !F

Γ ⊢ (M,N) : A ∗B !E ∨ F

where E∨F stands for the maximal effect that may happen during the evaluation

of (M,N).

The let-calculus, which we shall introduce for deriving program equivalences,

has judgements of the form (Γ ⊢M !E), and inference rules for these judgements

that resemble those of effect systems. However, in the let-calculus, E ranges

over abstract properties like central , copyable, and discardable. These abstract

properties are meaningful for almost every programming language. For concrete

languages, the abstract properties have concrete meanings: For example, in a

language whose only non-functional behaviour is accessing a global store, an ex-

pression is central if it neither reads nor writes, and discardable if it does not

write. (We shall discuss this in Chapter 6).

A deep study of the connection between the let-calculus and effect systems

from the literature still lies in the future.

Linear, affine, and relevant logic As described in Section 1.2.2, consider-

ing numbers of free occurrences of variables can help reasoning about programs.

In the let-calculus, the properties affine and relevant form two dimensions of a

three-dimensional reasoning principle that I call the precartesian cube. There-

fore, the let-calculus is related with affine, relevant, and linear logic. However,

the third dimension of the precartesian cube, which deals with evaluation order,

goes beyond that.
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Graphs as abstract syntax Sometimes people use graphs or diagrams as an

abstract syntax of programs. For example, a sequent (x1 : A1, . . . , xn : An ⊢ M :

B1 ∗ · · · ∗Bm) may be represented by a diagram

-

-

-

-

A1

An

...

B1

Bm

...M

Graphs work very well as an abstract syntax for denoting morphisms of

precartesian categories, and are thus an interesting alternative to the let-

calculus. Using graphs in this way has been studied by Alan Jeffrey and Ralf

Schweimeier [SJ99, Jef98]. (The categorical models they consider are close rela-

tives of precartesian categories, together with a ‘trace’ for modelling recursion.)

A key feature of their graphs is an extra ‘thread’ that determines the evalua-

tion order (‘control flow’). For example, for sequents (x : A ⊢ M : B) and

(x : A ⊢ N : C), the sequent

x : A ⊢ let y = M in let z = N in (y, z) : B ∗ C

corresponds to the diagram

M

N

- --

-

- -

-A B

C

where the thin arrows indicate the data flow and the thick arrows indicate the

control flow.

There is a close connection between isomorphisms of such graphs and program

equivalences. Although graph presentations are very interesting, we shall not

focus on them in this thesis. However, we shall use some diagrams to prove facts

about global state that are otherwise hard to obtain (Chapter 6).

1.5 Overview

A chapter dependency chart is presented in Figure 1.8.
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In Chapter 2, we shall introduce precartesian categories, which provide the

missing direct semantics described in Section 1.3.3.

In Chapter 3, we shall develop the let-calculus, and establish it as an internal

language of precartesian categories.

Chapter 4 contains a simple example of applying precartesian categories: We

shall construe well-established models of partiality—that is, concrete and ax-

iomatically given categories of partial maps—as precartesian categories. Accord-

ingly, we shall specialise the let-calculus to the p-calculus—a simple calculus which

is sound and complete for the models of partiality under consideration. Thus we

shall understand the non-termination of programs as a particularly simple com-

putational effect.

In Chapter 5, we shall see how precartesian categories (with extra structure)

arise as the Kleisli categories of Moggi’s monadic models, in such a way that our

direct semantics validates the same program equivalences as Moggi’s semantics.

Chapter 6 describes an application of precartesian categories which is more

advanced than the study of partiality in Chapter 4: We shall discuss in great

detail a way of adding global state to an existing computational system. Math-

ematically, this corresponds to constructing a new precartesian category from

a given one. We shall also describe a language transform that describes this

construction. The focus of Chapter 6 is on a mathematical analysis of the new

system with global state. This analysis yields insights that seem hard to obtain

without using precartesian categories. The main development in Chapter 6 does

not involve monads. However, we shall briefly compare our approach with the

well-known approach that uses ‘side-effects monads’, so a small part of Chapter 6

relies on Chapter 5.

In Chapter 7 we shall prove that Moggi’s computational lambda-calculus is

sound and complete with respect to the precartesian categories with extra struc-

ture introduced in Chapter 5. We shall also compare the let-calculus with the

computational lambda-calculus and suggest a combination of the two.

Chapter 8 describes another advanced application of precartesian categories:

We shall analyse an implementation technique called continuation-passing-style

transform (CPS transform). Roughly speaking, this transform takes the expres-

sions of a typical programming language to expressions of a simpler language that

does not require a call stack4. We shall analyse the CPS transform denotationally

4This is a very pragmatic and computational description. Continuations have been exten-
sively studied in the literature, with various goals and methods that range from logics to real-life
compilers. For example, the compiler of Standard ML of New Jersey used to be based on a
CPS transform [App92].
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by construing the source language as a precartesian category and using a method

similar to the one that we use for global state in Chapter 6. That analysis is

based on the pioneering work of Hayo Thielecke [Thi97a].
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Chapter 4: Example:
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Chapter 8: Example: Continuations
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Figure 1.8: Chapter dependency chart
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Chapter 2

Precartesian categories

Informally, a precartesian category K is a category together with a tensor ⊗

which is a generalised cartesian product, and a tensor unit I which is a generalised

terminal object. In particular, K has morphisms δ : A - A⊗A, !A : A - I,

p : A⊗B - A, and q : A⊗B - B which are generalisations of the evident

maps of a category with finite products. The generalisation is such that the tensor

need no longer be functorial in both arguments jointly, but only in each argument,

and that δ, !, p, and q need no longer be natural. This generalisation solves

the problems related with the evaluation order and the number of evaluations

described in the introduction.

2.1 Preliminary definitions

Although precartesian categories are fundamentally simple, their definition is not.

In fact, there are several possible definitions that we shall prove to be equivalent

(Proposition 2.1). The definition that we choose uses two auxiliary structures.

The first definition is taken from [PR97]:

Definition 2.1. A binoidal category is a category K together with

• For each object A, a functor A⊗ (−) : K - K

• For each object B, a functor (−) ⊗ B : K - K

such that for all objects A and B

(A⊗ (−))(B) = ((−) ⊗B)(A)

For the joint value, we write A⊗ B, or short AB.

26



Definition 2.2. A pseudocartesian category is a binoidal category together with

an object I and transformations1 δA : A - A ⊗ A, pA,B : A ⊗ B - A,

qA,B : A⊗ B - B, and !A : A : A - I.

For morphisms f : A - A′ and g : B - B′ of a pseudocartesian category,

let

f ⊗ g =def f ⊗ B;A′ ⊗ g and 〈f, g〉 =def δ; f ⊗ g

We call the transformation 〈p; p, 〈p; q, q〉〉 : (AB)C - A(BC) the associativity

map, 〈q, p〉 : AB - BA the twist map, and p : A⊗I - A and q : I⊗A - A

the neutrality maps.

Example 2.1. The category Rel of sets and relations. The tensor on objects is

the cartesian product of sets, I is the one-element set, and (letting A be a set, R

a relation, and ∗ the unique element of I)

(x, y)(R⊗A)(x′, y′) ⇔ xRx′ ∧ y = y′

(x, y)(A⊗R)(x′, y′) ⇔ x = x′ ∧ yRy′

x δ (y, z) ⇔ x = y = z

x ! ∗ ⇔ true

(x, y) p z ⇔ x = z

(x, y) q z ⇔ y = z

Example 2.2. A monoid M , construed as a one-object category. The tensor unit

I is the only object, I ⊗ (−) and (−) ⊗ I are equal to the identity functor, and

δI , pI,I , qI,I and !I are equal to the neutral element.

2.2 Central, discardable, and copyable mor-

phisms

Recall Diagrams 1.4–1.6 from the introduction. As we have seen, the validity

of these diagrams is why categories with finite products may validate too many

program equivalences. In a pseudocartesian category, these diagrams need no

longer commute. Therefore it makes sense to define the classes of morphisms for

which these diagrams do commute. These definitions are crucial for the rest of

this thesis.

1By a transformation from a functor F : K - K ′ to a functor G : K - K ′, I mean a
map that sends each object A of K to an arrow FA - GA
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Definition 2.3. A morphism f : A - A′ of a binoidal category K is called

central if for each g : B - B′

AB
fB- A′B

AB′

Ag

? fB′
- A′B′

A′g

?

BA
Bf- BA′

B′A

gA

? B′f- B′A′

gA′

?

The centre ZK of K is defined as the subcategory determined by all objects and

the central morphisms.

Example 2.3. In a monoid M construed as a one-object pseudocartesian cate-

gory, an element a ∈M is central if and only if for all b ∈ M it holds that ab = ba.

So centrality coincides with the established notion of centrality from algebra.

Example 2.4. In Rel , all morphisms are central.

Definition 2.4. A morphism f : A - B in a pseudocartesian category K is

called discardable if

A
! - I

B

f

? ! - I

‖

The category K! is defined as the subcategory of K whose objects are those of

K, and whose morphisms are the discardable morphisms of K.

Example 2.5. In a monoid construed as a one-object pseudocartesian category,

only the identity morphism is discardable.

Example 2.6. In Rel , R : A - B is discardable if and only if R is a total—that

is, it relates every x ∈ A with at least one element of B.

Definition 2.5. A morphism f : A - B of a pseudocartesian category K is

called copyable if the following two diagrams commute:

A
δ - AA A

δ - AA

AB

Af

?
BA

fA

?

B

f

? δ - BB

fB

?
B

f

? δ - BB

Bf

?
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Kδ is defined as the class of copyable morphisms of K.

Example 2.7. In Rel , the copyable morphisms are the partial functions.

Example 2.8. In a monoid construed as a one-object pseudocartesian category,

the copyable morphisms are the idempotents. In particular, the copyable mor-

phisms do not generally form a category. To see this, let M be the monoid of

endofunctions on the set {0, 1, 2}, and define f, g ∈M by

M
f - M

g - M

0 - 0 0

1 1 - 1

-

2 - 2 -
-

2

Clearly, f and g are idempotent, but f ; g is not.

Definition 2.6. A morphism of a pseudocartesian category is called focal if it is

central, copyable, and discardable.

Example 2.9. In Rel , the focal morphisms are the total functions.

I have the notion of focal morphisms from Peter Selinger, who uses it for

models of control [Sel00]. The focal morphisms form a category. To see this, it

suffices to check that the composition of focal morphisms is copyable. This is so

because for focal morphisms f : A - B and g : B - C we have

f ; g; δ = f ; δ;B ⊗ g; g ⊗ C (because g is copyable)

= δ;A⊗ f ; f ⊗ B;B ⊗ g; g ⊗ C (because f is copyable)

= δ;A⊗ f ;A⊗ g; f ⊗ C; g ⊗ C (because f and g are central)

= δ;A⊗ (f ; g); (f ; g)⊗ C (because A⊗ (−) and (−) ⊗ C are functors )

We call the category of focal morphisms the focus. With a similar calculation as

above we get the following lemma, which we shall need later:

Lemma 2.1. If in a precartesian category we have n copyable morphisms

A0
f1- A1

f2- · · ·
fn- An

such that all or all but one of the fi are central, then f1; . . . ; fn is copyable.
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2.3 The main definition

In this section, we shall define precartesian categories and prove an important

proposition that provides three alternative definitions.

Definition 2.7. A precartesian category is a pseudocartesian category K such

that ⊗, I, δ, p, q, and ! form finite products on the focus, and the associativity

map, twist map, and neutrality maps are natural in each argument with respect

to arbitrary morphisms of K.

This is a very compact definition, so let’s spell it out: That ⊗, I, δ, p, q,

and ! form finite products on the focus implies in particular that the focus is

closed under ⊗, and that δ, p, q, and ! are focal. ‘Natural in each argument with

respect to arbitrary morphisms’ means the following: For example, letting αA,B,C :

(AB)C - A(BC) be the associativity map it must hold for all morphisms

f : A - A′, g : B - B′, h : C - C ′ of K (not only for focal morphisms)

that

(AB)C
α- A(BC)

(A′B)C

(fB)C

?

α
- A′(BC)

f(BC)

?

(AB)C
α- A(BC)

(AB′)C

(Ag)C

?

α
- A(B′C)

A(gC)

?

(AB)C
α- A(BC)

(AB)C ′

(AB)h

?

α
- A(BC ′)

A(Bh)

?

This does not follow from the finite products on the focus, which imply only the

naturality of α with respect to focal morphisms. Similar remarks apply to the

twist map and the neutrality maps.
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Remark 2.1. If f is morphism of a precartesian category, then

f ; δ = δ; idf ; f id if and only if f ; δ = δ; f id ; idf

(So, to see that f is copyable, it suffices to check one of the two equations.) To

see this, let τ be the twist map, and suppose that f ; δ = δ; idf ; f id . Then

f ; δ = f ; δ; τ = δ; idf ; f id ; τ = δ; idf ; τ ; idf = δ; τ ; f id ; idf = δ; f id ; idf

The converse follows symmetrically. However, there exist precartesian categories

where

δ; idf ; f id 6= δ; f id ; idf

—for example, the Kleisli category of a continuations monad, which we shall

study in Chapter 8.

The following proposition provides four equivalent descriptions of precartesian

categories. Condition 1 corresponds to our definition of a precartesian category.

Condition 2 will be our most-used way of checking that we have a precartesian

category. The point of Condition 3 is that it shows (after some contemplation)

that all we need to define precartesian categories are equations which are univer-

sally quantified over objects and morphisms.

Proposition 2.1. Let K be a pseudocartesian category such that the associativity

map, twist map, and neutrality maps are natural in each argument with respect

to arbitrary morphisms of K. Then the following are equivalent:

1. ⊗, I, δ, p, q, and ! form finite products on the focus.

2. The central maps, the discardable maps, and the copyable maps, respectively,

are closed under ⊗, all components of δ, p, q, and ! are focal, and

δ; p⊗ q = id

δ; p = id

δ; q = id

!I = id I

pA,B = A⊗!; pA,I

qA,B =! ⊗ B; qI,B

3. All components of δ, p, q, and ! are focal, the equations from Con-

dition 2 hold, the twist map is self-inverse, and the associativity maps

(AB)C - A(BC) and A(BC) - (AB)C are copyable and inverse

to each other.
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4. ⊗, I, δ, p, q, and ! form finite products on some subcategory of the centre.

For the proof, which is quite technical, see Appendix C.

Lemma 2.2. In any precartesian category, the projections are natural in the non-

discarded argument—that is for all morphisms f (not only focal f) it holds that

f ⊗ id ; p = p; f and id ⊗ f ; q = q; f .

Proof. For any object B and morphism f : A - A′, we have fB; pA′,B =

fB;A′!; pA′,I = A!; fI; pA′,I = A!; pA,I ; f = pA,B; f

2.4 A revised semantics of the let-language

Next we shall adapt the semantics of the let-language (i.e. the first-order frag-

ment of the computational lambda-calculus), which we presented in Figure 1.5,

to precartesian categories. Let Γn stand for Γ⊗ · · · ⊗ Γ, where Γ occurs n times,

and let ∆ stand for the evident n-fold diagonal Γ - Γn. (It is harmless to omit

brackets in the n-ary tensor product, because the associativity map is a focal,

and in the focus, which is a category with finite products, the associativity and

neutrality maps satisfy the usual coherence laws known from monoidal categories

(see [Lan71]).) The revised semantics is presented in Figure 2.1. In the case

where the precartesian category is a category with finite products, this semantics

agrees with the one in Figure 1.5. The only change consists in clarifying the rules

for pairs and constants with respect to the evaluation order, which is chosen to

be from left to right.

2.5 Strong precartesian functors

When two languages are modelled by precartesian categories, we may want to

compare the models. Obviously, this requires some notion of morphism between

precartesian categories. For this purpose, we shall define strong precartesian

functors. The hurried reader may want to skip this section and return to it on a

call-by-need basis.

Naively, we could define a morphism K - K ′ between precartesian cate-

gories as a functor that preserves all precartesian structure on the nose (i.e. the

tensor an tensor unit, the diagonal, discard map, and the projections). However,

‘on the nose’ can be too strict, and we have to use ‘up to isomorphism’ instead.

This leads to the definition of a strong precartesian functor :
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Rule Syntax Semantics

var

x1 : A1, . . . , xn : An ⊢ xi : Ai = A1 · · ·An
πi- Ai

let

Γ ⊢M : A = Γ
f- A

Γ, x : A ⊢ N : B = ΓA
g- B

Γ ⊢ let x = M in N : B = Γ
δ- ΓΓ

Γf- ΓA
g- B

()

Γ ⊢ () : unit = Γ
!- I

(−,−)

Γ ⊢M : A = Γ
f- A

Γ ⊢ N : B = Γ
g- B

Γ ⊢ (M,N) : A ∗B = Γ
δ- ΓΓ

fΓ- AΓ
Ag- AB

πi

Γ ⊢M : A1 ∗ A2 = Γ
f- A1A2

Γ ⊢ πi(M) : Ai = Γ
f- A1A2

πi- Ai

f : A1, . . . , An
- B Γ ⊢Mi : A = Γ

gi- Ai

Γ ⊢ f(M1, . . . ,Mn) : B = Γ
∆- Γn

g1Γn−1

- A1Γ
n−1 A1g2Γn−2

- · · ·
A1···An−1gn- A1 · · ·An

f- B

Figure 2.1: Semantics of the let-language in a precartesian category
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FA = FA

(FA) ⊗ (FA)

δ′

? F2- F (A⊗A)

Fδ

?

(2.1)

FA = FA

I ′

!′

? F0 - FI

F !

?

(2.2)

FA⊗ FB
p′ - FA

FB

q′

?
� Fq

F (AB)

Fp

6
F
2

-
(2.3)

Figure 2.2: Conditions stating that precartesian functors preserve structure up
to F2 and F0

Definition 2.8. A strong precartesian functor F : K - K ′ between precarte-

sian categories consists of a functor F : K - K ′, a natural isomorphism

F2(A,B) : (FA) ⊗ (FB) ∼= F (A⊗B)

(natural separately in A and B), and an isomorphism

F0 : I ′ ∼= FI

such that for all objects A, B, and C of K, the diagrams in Figures 2.2 and 2.3

commute. A strong precartesian functor is called strict if F0 and F2 are identities.

For strong precartesian functors F : K - K ′ and G : K ′ - K ′′, let

(GF )2(A,B) =def

(

GFA ⊗ GFB
G2- G(FA ⊗ FB)

GF2- GF (A ⊗ B)
)

(2.8)

(GF )0 =def

(

I ′′
G0- GI ′

GF0- GFI
)

(2.9)

With this composition, strong precartesian functors and precartesian categories

form a category.

Remark 2.2. As we shall see in Remarks 2.4 and 2.5, there are potential improve-

ments to our definition of a strong precartesian functor (thanks to John Power for
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(FA⊗ FB) ⊗ FC
α′
- FA⊗ (FB ⊗ FC)

F (A⊗ B) ⊗ FC

F2 ⊗ FC

?
FA⊗ F (B ⊗ C)

FA⊗ F2

?

F ((A⊗B) ⊗ C)

F2

? α- F (A⊗ (B ⊗ C))

F2

?

(2.4)

FB ⊗ I
p′ - FB

FB ⊗ FI

FB ⊗ F0

? F2- F (B ⊗ I)

Fp

6
I ⊗ FB

q′ - FB

FI ⊗ FB

F0 ⊗ FB

? F2- F (I ⊗B)

Fq

6

(2.7)

Figure 2.3: Coherence conditions for strong precartesian functors

drawing my attention to this). However, all these improvements lead to special

cases of Definition 2.8, so we are playing safe in that everything that we prove

about the strong precartesian functors in the sense of Definition 2.8 certainly

holds for functors in the sense of the improved definitions.

The precartesian properties (i.e. centrality, copyability, and discardability)

will be our major interest. So it is important that strong precartesian functors

‘behave well’ with respect to these properties. In particular, strong precartesian

functors should preserve and reflect these properties to the same extent as strict

precartesian functors. Remarkably, this is so although F2 and F0 may be not

focal:

Proposition 2.2. Let F : K - K ′ be a strong precartesian functor. Then

• F preserves copyable morphisms and discardable morphisms.

• If F is full and for each object C of K ′ there is a central iso C ∼= FB for

some object B of K, then F preserves central morphisms.

• If F is faithful, then it reflects central morphisms, copyable morphisms, and

discardable morphisms.

Proof. First, let F be full, and for each object C of K ′ let there be a central iso

C ∼= FB for some object B of K. To see that F preserves central morphisms, let
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f ∈ K(A,A′) be central, let g ∈ K ′(B,B′), and consider

FA⊗ FB
Ff ⊗ FB - FA′ ⊗ FB

F (A⊗ B)
F (f ⊗B)-

F
2

-

F (A′ ⊗ B)
�

F 2

F (A⊗ B′)

F (A⊗ g)

? F (f ⊗ B′)- F (A′ ⊗B′)

F (A′ ⊗ g)

?

FA⊗ FB′

FA⊗ Fg

? Ff ⊗ FB′
-

F 2

-

FA′ ⊗ FB′

FA′ ⊗ Fg

?

�

F
2

The inner square commutes because f is central inK. The outer square commutes

because the iso F2 is natural. Now let h ∈ K ′(C,C ′), let B, B′ be such that there

are central isos j : C ∼= FB and j′ : C ′ ∼= FB′, and let Fg = j−1; h; j′. Consider

FA⊗ C
Ff ⊗ C - FA′ ⊗ C

FA⊗ FB
Ff ⊗ FB-

F
A
⊗
j
-

FA′ ⊗ FB
�
F
A
′ ⊗

j

FA⊗ FB′

FA⊗ Fg

? Ff ⊗ FB′
- FA′ ⊗ FB′

FA′ ⊗ Fg

?

FA⊗ C ′

FA⊗ h

?

Ff ⊗ C ′
-

F
A
⊗
j
′
-

FA′ ⊗ C ′

FA′ ⊗ h

?

�

F
A ′
⊗
j ′

The left and right squares commute because FA⊗(−) and FA′⊗(−) are functors.

The top and bottom squares commute because j and j′ are central. Therefore

the whole diagram commutes, so Ff is central.

Proving that a strong precartesian functor F preserves copyable and discard-

able morphisms is easy. Now suppose that F is faithful. Let f ∈ K(A,A′) such

that Ff is central in K ′. To see that f is central in K, let g ∈ K(B,B′) and
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consider

F (A⊗B)
F (f ⊗B) - F (A′ ⊗ B)

FA⊗ FB
Ff ⊗ FB-

�

F
2

FA′ ⊗ FB

F 2

-

FA⊗ FB′

FA⊗ Fg

? Ff ⊗ FB′
- FA′ ⊗ FB′

FA′ ⊗ Fg

?

F (A⊗ B′)

F (A⊗ g)

? F (f ⊗ B′) -
�

F 2

F (A′ ⊗B′)

F (A′ ⊗ g)

?

F
2

-

The diagram commutes because Ff is central and F2 is natural. Because F is

faithful, we can cancel F from the outer square. The resulting square commutes

for all g, which is saying that f is central. Proving that F reflects copyable

morphisms and discardable morphisms is straightforward.

Remark 2.3. There are examples of strict precartesian functors that are rele-

vant for computer science and do not preserve central morphisms (see Proposi-

tion 6.11).

Remark 2.4. It is natural to ask whether we should require F2 and F0 to be

focal. One can prove that if they are focal, the conditions in Figure 2.2 imply

the coherence conditions in Figure 2.3, and not having to check those coherence

conditions would certainly be nice. Alas, the focality of F2 can cause a problem

with Definition 2.8: If G does not preserve central morphisms (and there are

realistic G that don’t), the components of (GF )2 may be not central. To solve

this problem, we could follow the following recipe:

• Instead of precartesian categories, consider pairs (K,S) where K is a pre-

cartesian category and S is a subcategory of the focus of K that has all

objects of K.

• Change Definition 2.8 in such a way that a strong precartesian functor F :

(K,S) - (K ′, S ′) must send morphisms of S to S ′, and all components

of F2 and F0 must be in S ′.

(The idea of introducing a subcategory S like above is essentially due to John

Power, who equipped premonoidal categories with a subcategory of the cen-

tre [Pow99b].) This solves the problem with Definition 2.8. For any K, there
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is a greatest S—the focus—and a least S—the discrete category determined by

all objects of K. It is a future challenge to find criteria for choosing a suitable S

in the case where K models a programming language. A good choice of S should

be a category of (syntactic) ‘values’ (e.g. freely generated by constants, pairing,

the lambda-operator, and so on).

Corollary 2.3. Strong precartesian functors that are isomorphisms of categories

preserve and reflect central morphisms, copyable morphisms, and discardable mor-

phisms.

Remark 2.5. We cannot simply replace ‘isomorphism of categories’ by ‘equivalence

of categories’ in Corollary 2.3. To see this, let F : K - K ′ and G : K ′ - K

be precartesian functors that form an equivalence of categories. To conclude that

F preserves central morphisms, we would need the extra condition that every

component of the natural isomorphism IdK ′
∼= FG is central. However, there is

a way out of this dilemma if we follow the recipe in Remark 2.4: In that case,

we could require natural transformations F - G : (K,S) - (K ′, S ′) to

have components in S ′. With such natural transformations as 2-cells, we would

get a 2-category with 0-cells (K,S) such that equivalences (K,S) ≃ (K ′, S ′) in

that 2-category preserve centrality. However, we shall not use this 2-categorical

approach in this thesis.

2.6 About the origin of precartesian categories

This section is a brief review of the literature that inspired my definition of

precartesian categories. In a technical sense, the remainder of this thesis does not

depend on the contents of this section.

As explained in Section 1.1.2, it matters in which order the arguments of

a procedure are evaluated. Earlier in this chapter, we tackled this problem by

removing the condition that the tensor of a categorical model has to be functorial

in both arguments jointly. To my knowledge, this generalisation was first made

when John Power and Stuart Anderson introduced premonoidal categories in

the early 90’s, for modelling finite non-determinism [AP97]. Roughly speaking,

symmetric premonoidal categories are generalised symmetric monoidal categories

in that the tensor need not be a functorial in both arguments jointly, but only in

each argument. Here is a precise definition, taken from [PR97]:

Definition 2.9. A symmetric premonoidal category is

• A binoidal category C
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• An object I of C

• Four natural isomorphisms A(BC) ∼= (AB)C, IA ∼= A, AI ∼= A, and

AB ∼= BA, with central components that satisfy the coherence conditions

known from symmetric monoidal categories.

Symmetric monoidal categories are exactly those symmetric premonoidal cat-

egories that have only central morphisms. Obviously, every precartesian category

forms a symmetric premonoidal category, where the structural isomorphisms are

those of the focus construed as a category with finite products.

Along with symmetric premonoidal categories came symmetric premonoidal

functors:

Definition 2.10. A strict symmetric premonoidal functor F between symmetric

premonoidal categories K and K ′ is a functor that preserves the tensor, the tensor

unit, and the structural isomorphisms on the nose, and sends central morphisms

to central morphisms.

Obviously, every strict precartesian functor that preserves central morphisms

is a strict symmetric premonoidal functor. (As explained in Section 2.5, to cover

certain realistic examples in computer science, we had to remove the condition

that functors preserve central morphisms.)

In the Power’s framework, copying and discarding come into play in the guise

of Freyd categories [PT99]:

Definition 2.11. A Freyd category consists of a category C with finite products,

a symmetric premonoidal categoryK with the same objects as C, and an identity-

on-objects strict symmetric premonoidal functor F : C - K.

Obviously, every precartesian category K forms a Freyd category, where C

is the focus of K, and F is the inclusion functor. There is also an opposite

construction:

Proposition 2.4. Let F : C - K be a Freyd category, where δ is the diagonal

of C, p and q are the projections of C, and ! is the discard map of C. Then

(K,Fδ, Fp, Fq, F !) is a precartesian category. Moreover, all morphisms in the

image of F are focal.

Typically, when a Freyd category F : C - K is used for modelling a

programming language, K is a category for modelling all expressions, C is a

category for modelling syntactically-defined ‘values’ only, and F is faithful. While

all morphisms in the image of F are focal, there may be more focal morphisms—

that is, there may be focal morphisms that do not denote syntactic values.
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Chapter 3

The let-calculus

In this chapter we shall develop the let-calculus—a calculus for reasoning about

program equivalences. Its design is inspired by the notions central, copyable, and

discardable, which are associated with precartesian categories. Its judgements

have form

Γ ⊢M ≡ N : A

Γ ⊢M !E where E ∈ {central , copyable, discardable, focal , . . .}

Γ ⊢M /ex where e ∈ {linear , relevant , affine, arbitrary, . . .}

where (Γ ⊢ M : A) and (Γ ⊢ N : A) are sequents of the let-language. (Filling in

the dots is part of this section.)

3.1 Exploiting categorical closure properties

The key observation that starts our development is stated by the following propo-

sition:

Proposition 3.1. In a precartesian category,

• The central morphisms are closed under all operations (i.e. they form a

subcategory which is closed under tensor and contains all components of δ,

p, q, and !).

• The discardable morphisms are closed under all operations.

• The copyable morphisms are closed under all operations except the compo-

sition of the category.

Proof. It is obvious that the central morphisms and the discardable morphisms,

respectively, form a subcategory. By the definition of a precartesian category, δ,
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p, q, and ! are focal and therefore central, copyable, and discardable. By Condi-

tion 2 of Proposition 2.1, the central morphisms, the copyable morphisms, and the

discardable morphisms, respectively, are closed under tensor. Clearly, identities

are copyable. That the copyable morphisms are not closed under composition we

know from Example 2.8.

The key observation now is the following: Because in every precartesian cat-

egory the central, copyable, and discardable morphisms, respectively, are closed

under all operations (almost all in the case of copyable morphisms), the sequents

(Γ ⊢M : A) for which (Γ ⊢M !E) holds are closed under all (almost all) sequent

formation rules.

Example 3.1. Suppose that we have

(Γ ⊢M ! central) and (Γ ⊢ N ! central)

and let central morphisms f : Γ - A and g : Γ - B be the denotations of

(Γ ⊢ M : A) and (Γ ⊢ N : B), respectively. The denotation of (Γ ⊢ (M,N) : A ∗

B) is δ; f id ; idg. This is central because the centre is closed under all operations,

and therefore we should be able to derive

Γ ⊢ (M,N) ! central

The only catch is that the copyable morphisms are not closed under compo-

sition, but we shall find a way to deal with that problem.

3.2 The precartesian cube

It is helpful to arrange the properties central , copyable, discardable, and all their

intersections, in a three-dimensional boolean lattice as in Figure 3.1—let’s call

it the precartesian cube. Let ∨ and ∧ stand for the least upper bound and the

greatest lower bound, respectively, in the precartesian cube. With these operators

we can refine Example 3.1:

Example 3.2. Suppose that in a precartesian category K it holds that

(Γ ⊢M ! central ∧ discardable) and (Γ ⊢ N ! central ∧ copyable)

Because the morphisms denoted by (Γ ⊢ M : A) and (Γ ⊢ N : B) are central,

by Proposition 3.1 the morphism denoted by (Γ ⊢ (M,N) : A ∗ B) is central
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central ∧ copyable focal

central central ∧ discardable

copyable copyable ∧ discardable

arbitrary discardable

Figure 3.1: The precartesian cube

too. Therefore, it holds in K that (Γ ⊢ (M,N) ! central). Observe that in the

precartesian cube, we have

(central ∧ discardable) ∨ (central ∧ copyable) = central

More generally, this suggests that the following inference rule sound:

Γ ⊢M !E Γ ⊢ N !F

Γ ⊢ (M,N) !E ∨ F

Rules like this should apply to all kinds of let-language expressions. This leads

to the inference system in Figure 3.2. The use of max instead of ∨ is necessary

only because the copyable morphisms are not generally closed under composition.

With max, the Rules in Figure 3.2 are sound because, by Lemma 2.1, for n + 1

copyable morphisms A0
f0- A1

f1- · · ·
fn- An such that at least n of the fi

are central, the morphism f0; . . . ; fn is copyable.
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max{E1, . . . , En} =

{

E1 ∨ . . . ∨ En ∨ copyable
if Ei � central for
more than one i

E1 ∨ . . . ∨ En otherwise

x1 : A1, . . . , xn : An ⊢ xi ! focal
Γ ⊢M !E Γ, x : A ⊢ N !F

Γ ⊢ let x = M in N ! max{E,F}

Γ ⊢ () ! focal
Γ ⊢M !E Γ ⊢ N !F

Γ ⊢ (M,N) ! max{E,F}

Γ ⊢M !E

Γ ⊢ πi(M) !E

Γ ⊢M1 !E1 . . . Γ ⊢Mn !En
y1 : A1, . . . , yn : An ⊢ f(y1, . . . , yn) !E for every constant

f : A1, . . . , An - BΓ ⊢ f(M1, . . . ,Mn) ! max{E,E1, . . . , En}

Γ ⊢M !E
If E ≤ E ′

Γ ⊢M !E ′

Figure 3.2: Rules for the precartesian cube
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3.3 Exploiting the precartesian cube

3.3.1 Number of evaluations

What do we gain when we derive (Γ ⊢ M !E)? For example, suppose that

(Γ ⊢M ! copyable) holds in a precartesian category. Then it also holds that

Γ ⊢ let x = M in (x, x) ≡ (M,M) : A ∗ A

because that equation just states that the denotation of (Γ ⊢M : A) is copyable.

It is reasonable to guess that the equation

Γ ⊢ (let x = M in N) ≡N [x := M ] : B (let.β)

holds for every sequent (Γ, x : A ⊢ N : B) where N has one or more free oc-

currences of x. However, this is not true in every precartesian category, because

if the denotation of (Γ ⊢ M : A) is not central, then it is unsound to swap M

with subexpressions of N with respect to the evaluation order. For example, the

equation

Γ ⊢ (let x = M in let y = P in x) ≡ (let y = P inM) : B

may be false if the denotation of P is not central. However, Equation let.β is true

for N that have at least one free occurrence of x if the denotation of (Γ ⊢M : A)

is copyable and central. (The proof, which is easy, is part of the soundness proof

in Appendix B.) Similarly, Equation let.β is true if the denotation of (Γ ⊢M : A)

is discardable and central and N has at most one free occurrence of x, and also

if denotation of (Γ ⊢ M : A) is central and N has exactly one free occurrence of

x. The rules in Figure 3.3 help phrasing these results systematically.

Remark 3.1. Why do we internalise properties e like relevant and affine in the

calculus, although they are simple and do not depend on the other two kinds of

judgements? The answer is that when we deal with evaluation order in the next

section, we shall have to introduce a property e such that the judgements of the

form (Γ ⊢M /e ) and the other two kinds of judgements depend on each other.

Now let

Φ(central ∧ copyable) = relevant

Φ(central ∧ discardable) = affine

Φ(central) = linear

Φ(focal) = arbitrary
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Γ ⊢ N : A
if N has at most one free occurrence of x

Γ ⊢ N / relevant x

Γ ⊢ N : A
if N has at least one free occurrence of x

Γ ⊢ N / affine x

Γ ⊢ N / arbitrary x

Γ ⊢M /ex Γ ⊢M /e′ x

Γ ⊢M / (e ∧ e′) x

Γ ⊢M /ex
if e ≤ e′

Γ ⊢M /e′ x

(linear =def relevant ∧ affine)

Figure 3.3: Rules for the number of free occurrences of variables

Our results mean that for all sequents (Γ ⊢M : A) and (Γ, x : A ⊢ N : B) of the

let-calculus, and for each of the above four arguments E of Φ, the following rule

holds in every precartesian category:

Γ ⊢M !E Γ, x : A ⊢ N /Φ(E) x

Γ ⊢ (let x = M in N) ≡ N [x := M ] : B
(3.1)

3.3.2 Evaluation order

Now consider Figure 3.4. Let’s call the properties in the bottom cube the expres-

sion properties. To each of the precartesian properties that are lesser or equal then

central (i.e. to the properties of the top face of the precartesian cube) Φ assigns

a suitable expression property from the set {relevant , affine, central , arbitrary}

such that Rule 3.1 is sound. It is now an obvious step to look for four expression

properties that correspond to the bottom face of the precartesian cube. Letting

X = Φ(copyable ∧ discardable)

we should be able to fill in the three remaining corners of the expression-property

cube. So what is X?
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central ∧ copyable focal

central central ∧ discardable

copyable copyable ∧ discardable

arbitrary discardable

↓ Φ (order-reversing lattice iso)

relevant arbitrary

linear affine

X ∧ relevant X

X ∧ linear X ∧ affine

Figure 3.4: The missing generator X
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Clearly, X should have to do with the evaluation order. Suppose that we have

(Γ ⊢M ! copyable ∧ discardable). Now for example, let

N = (let y = (P, f1(x)) in f2(Q, x))

where x occurs free neither in P nor in Q. If Equation let.β is to be true, then

the substitution must get M past P to substitute M for the first occurrence of

x. Moreover, the substitution must get M past (P, f1(x)) and Q to substitute M

for the second occurrence of x. We do not know whether M is central, but the

substitution is certainly valid if P , (P, f1(x)), and Q are central. The idea is now

to determine for each variable x and expression N the set bx(N) of subexpressions

of N that might obstruct the substitution. In our example, we have

bx(N) = {P, (P, f1(x)), Q}

The letter b stands for ‘before’, because bx(N) determines all problematic subex-

pressions of N that occur before free occurrences of x. (‘Before’ is to be un-

derstood with respect to the evaluation order, which is from left to right in our

denotational semantics. A different evaluation order would imply a different def-

inition of b.)

Now we ensure that Equation let.β is true by requiring that all elements of

bx(N) be central. To get things completely right, we must define bx on sequents

instead of expressions, because the precartesian properties cannot be made prop-

erties of expressions1. However, because the uniqueness of the type of an expres-

sion M in an environment Γ, we can allow ourselves to omit the types. This

leads to the definition of bx(N) as in Figure 3.5. Note that forming bx(N) is quite

intuitive for a human.

Now we can define the missing expression property X, which we shall call

clear :

Γ ⊢M ! central ∀(Γ ⊢M) ∈ bx(∆ ⊢ N)

∆ ⊢ N / clear x
(3.2)

This completes the picture. For the record, the cube of expression properties is

presented in Figure 3.6.

3.4 Summary of the let-calculus

We shall now summarize the rules of the let-calculus. Some unsurprising rules

remain to be introduced—they are presented in Figure 3.7 (omitting environments

1For example, for every (Γ ⊢ M : A) in Rel it holds that (x : 0, y : A ⊢ M ! discardable)
if 0 denotes the empty set, which is the initial object. But it can obviously be false that
(y : A ⊢ M ! discardable), for example if (x : A ⊢ M : B) denotes the empty relation.
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bx(Γ ⊢ y) = ∅

bx(Γ ⊢ let y = M in N) =







∅ if x = y

bx(Γ ⊢M) if x 6∈ FV (N) ∪ {y}

bx(Γ ⊢M) ∪ {Γ ⊢M}

∪bx(Γ, y ⊢ N) if x ∈ FV (N) − {y}

bx(Γ ⊢ ()) = ∅

bx(Γ ⊢ (M,N)) =

{

bx(Γ ⊢M) if x 6∈ FV (N)

bx(Γ ⊢M) ∪ {Γ ⊢M} ∪ bx(Γ ⊢ N) if x ∈ FV (N)

bx(Γ ⊢ πi(M)) = bx(Γ ⊢M)

bx(Γ ⊢ f(M1, . . . ,Mn)) =

{
(bx(Γ ⊢M1) ∪ {Γ ⊢M1}) ∪ . . . ∪ (bx(Γ ⊢Mi−1)
∪{Γ ⊢Mi−1})∪ bx(Γ ⊢Mi) where Mi is the right-
most of the Mj such that x ∈ FV (Mj)

Figure 3.5: Definition of bx(N)

relevant arbitrary

linear affine

clear ∧ relevant clear

clear ∧ linear clear ∧ affine

Figure 3.6: The cube of expression properties
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≡ is a congruence

(let y = (let x = M in N) in O) ≡ (let x = M in let y = N in O) (comp)

() ≡ x (1.η)

πi(x1, x2) ≡ xi (×.β)

(π1(x), π2(x)) ≡ x (×.η)

M ≡ N M !E

N !E

(let x = M in (x, x)) ≡ (M,M)

M ! copyable

(let x = M in ()) ≡ ()

M ! discardable

Figure 3.7: The remaining rules of the let-calculus

and types). (Why there are the two rules involving copyable and discardable, but

no rule for central , will be explained in the discussion of Conjecture 3.1 at the

end of Appendix B.)

Definition 3.1. The let-calculus is defined as follows: Its judgements are those

of the form

• (Γ ⊢M ≡ N : A)

• (Γ ⊢M !E) where E is a property of the precartesian cube

• (Γ ⊢ M /ex) where x is a variable, and e is a property of the expression

cube

(where (Γ ⊢ M : A) and (Γ ⊢ N : A) are sequents of the let-language.) The

derivation rules are the ones summarised in Appendix A.

3.5 A caveat

The let-calculus has the rule

Γ ⊢M !E Γ ⊢M ≡ N : A

Γ ⊢ N !E

which is sound for precartesian categories. However, the following rule is not

sound:

Γ ⊢M /ex Γ ⊢M ≡ N : A

Γ ⊢ N / e x
(3.3)
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To see this, let

Γ =def (x : B)

M =def (let y = x in ())

N =def ()

(3.4)

Because (x : B ⊢ x ! focal), by Rule 3.1 we have (x : B ⊢M ≡ N : unit). Because

we can derive (x : B ⊢ M / (relevant ∧ clear)x ), with Rule 3.3 we could derive

(x : B ⊢ N / (relevant ∧ clear)x ). By Rule 3.1, for every (⊢ M ′ : B) such that

(⊢M ′ ! copyable) we could derive

⊢ (let x = M ′ in ()) ≡ () : unit (3.5)

In Rel , the copyable morphisms are the partial functions. But if (⊢ M ′ : B)

denotes the empty function, then the left side of Equation 3.5 denotes the empty

function, and therefore the equation is false!

Similarly it follows that, given and expression property e and a variable x,

the sequents (Γ ⊢ M : A) for which (Γ ⊢ M /ex) is derivable cannot denote

some class of morphisms in such a way that the semantics is sound an complete

for precartesian categories. For suppose there was such a class. With Γ, M , N

as in Definition 3.4, the denotations of (Γ ⊢ M : A) and (Γ ⊢ N : A) are the

same. By soundness, the denotation of (Γ ⊢ M : A) is in the class denoted by

(Γ ⊢ − / (relevant ∧ clear) x), and therefore the denotation of (Γ ⊢ N : A) too

is in that class. By completeness, we get (Γ ⊢ N / (relevant ∧ clear) x), which

violates soundness, as shown for Rel .

3.6 Soundness and completeness

In this section we shall state soundness and completeness for the let-calculus.

First, we need a few definitions:

Definition 3.2 (Precartesian signature). For a collection B of base types, the

precartesian types over B are defined inductively by

A = A1 ∗A2 | unit | B

A constant over B is defined as a formal arrow f : A1, . . . , An - B where the

Ai and B are precartesian types over B. A precartesian signature is defined as

a pair Σ = (B,K) where B is a collection of base types, and K is a collection of

constants over B.
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K[[Γ ⊢M ≡ N : A]] =

{

true if K[[Γ ⊢M : A]] = K[[Γ ⊢ N : A]]

false otherwise

K[[Γ ⊢M ! central ]] =

{

true if K[[Γ ⊢M : A]] is central

false otherwise

K[[Γ ⊢M ! copyable]] =

{

true if K[[Γ ⊢M : A]] is copyable

false otherwise

K[[Γ ⊢M ! discardable]] =

{

true if K[[Γ ⊢M : A]] is discardable

false otherwise

K[[Γ ⊢M ! arbitrary ]] = true

K[[Γ ⊢M !E ∧ F ]] = K[[Γ ⊢M !E]] ∧K[[Γ ⊢M !F ]]

K[[Γ ⊢M / affine x]] =

{

true if M has at most one free occurrence of x

false otherwise

K[[Γ ⊢M / relevant x]] =

{

true if M has at least one free occurrence of x

false otherwise

K[[Γ ⊢M / clear x]] =







true if K[[∆ ⊢ N : B]] is central for all
(∆ ⊢ N : B) ∈ bx(Γ ⊢M)

false otherwise

K[[Γ ⊢M / arbitrary ]] = true

K[[Γ ⊢M /e1 ∧ e2 ]] = K[[Γ ⊢M /e1 ]] ∧K[[Γ ⊢M /e2 ]]

Figure 3.8: Interpretation of the let-calculus in a precartesian category K

Definition 3.3. A precartesian interpretation of a precartesian signature Σ =

(B,K) is a precartesian category K together with, for each base type A ∈ B,

an object [[A]] ∈ Ob(K), and for each constant (f : A1, . . . , An - B) ∈ K, a

morphism [[f ]] ∈ K([[A1]] ⊗ · · · ⊗ [[An]], [[B]]).

For a precartesian category K, let ΣK be the precartesian signature whose

base types are the objects of K and whose constants are the morphisms of K.

A precartesian interpretation K of a precartesian signature Σ assigns truth

values to judgements of the let-calculus over Σ as in Figure 3.8.

Definition 3.4. A let-theory over a precartesian signature Σ is defined as a

collection T of judgements over Σ of the form (Γ ⊢M ≡ N : A), (Γ ⊢M !E), or

(Γ ⊢M /ex), such that T is closed under the deduction rules of the let-calculus,
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and

• If (Γ ⊢M / affine x) ∈ T , then M has at most one free occurrence of x.

• If (Γ ⊢M / relevant x) ∈ T , then M has at least one free occurrence of x.

• If (Γ ⊢ M / clear x) ∈ T , then for every (∆ ⊢ N) ∈ bx(Γ ⊢ N) it is true

that (∆ ⊢ N ! central) ∈ T .

Definition 3.5. A precartesian model of a let-theory T over a precartesian sig-

nature Σ is a precartesian interpretation of Σ that validates all judgements of

T .

Theorem 3.2 (Soundness). If K is a precartesian interpretation of a precarte-

sian signature Σ, then the judgements over Σ that hold in K form a let-theory.

Proof. See Appendix B.

Theorem 3.3 (Completeness). Let T be a let-theory over a precartesian sig-

nature Σ. If a judgement of the form (Γ ⊢M ≡ N : A) holds in all models of T ,

then it is a theorem of T .

Proof. See Appendix B.

Conjecture 3.1. Completeness of the let-calculus holds also for the non-equational

judgements. That is, if T is a let-theory over a precartesian signature Σ, and a

judgement of the form (Γ ⊢ M !E) or (Γ ⊢ M /ex) holds in all models of T ,

then it is a theorem of T .

A discussion of the completeness issue for non-equational judgements, includ-

ing a strong argument in favour of Conjecture 3.1, is given at the end of Ap-

pendix B.

Definition 3.6. Let K and K ′ be interpretations of a precartesian signature Σ.

Then a morphism of interpretations of Σ from K to K ′ is a strict morphism of

precartesian categories from K to K ′ that preserves all base types and constants

of Σ.

Theorem 3.4 (Initiality). Let T be a let-theory over a precartesian signature

Σ. Then T has a precartesian (term-)model KT such that for every precartesian

model K of T there is a unique morphism H : KT
- K of interpretations of

Σ.

Proof. See Appendix B.
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3.6.1 Empirical soundness

Is the let-calculus sound for realistic call-by-value programming languages? Or

are there phenomena other than number and order of evaluations that we have

not taken into account? One can prove that all judgements of the let-calculus

can be derived (via longer and less intuitive proofs) in Moggi’s computational

lambda-calculus. (The converse is an open problem.) In the abstract of [Mog88]

Moggi’s claims that the computational let-calculus provides

a correct basis for proving equivalence of programs, independent from
any specific computational model.

This seems to be empirically true—nobody seems to have found non-pathological

examples where a derivable equation is operationally false. (A pathological exam-

ple would be a language that can observe the syntax of the running program (e.g.

by examining the store that contains the program). In that case, only identical

expressions would be operationally equivalent.)

3.7 Notation

Let’s conclude this chapter by fixing some notation that we shall use in the

remainder of this thesis.

For (Γ ⊢ M : A) we may write (Γ ⊢ M). (This is unambiguous, because Γ

and M determine A.) We may even write M for (Γ ⊢ M : A) when we know Γ.

For types A1, . . . , An, let

A1 ∗ A2 ∗ · · ·An−1 ∗ An =def







unit if n = 0

A1 if n = 1

(. . . (A1 ∗ A2) ∗ · · · ∗ An−1) ∗An if n ≥ 2

For expressions M1, . . . ,Mn, let

(M1,M2, . . . ,Mn−1,Mn) =def







() if n = 0

M1 if n = 1

(. . . (M1,M2), . . . ,Mn−1),Mn) if n ≥ 2

For a sequent M of type A1 ∗ · · · ∗ An and i ∈ {1, . . . , n}, let

pi(M) =def πi1(πi2(. . . πik(M)))

where the ij ∈ {1, 2} are the obvious indices leading to Ai. For expressions

M1, . . . ,Mn and variables x1, . . . , xn, let

(let x1 = M1 . . . xn = Mn inN) =def (let x1 = M1 in . . . let x1 = M1 in N)
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For variables x1, . . . , xn and expressions M1, . . . ,Mn, let N [x1 := M1, . . . , x :=

Mn] be the result of the simultaneous substitution of the free occurrences of the

xi by the corresponding Mi (avoiding variable capture).

When during a proof or discussion we introduce a variable that has not been

mentioned, we assume that this variable is fresh—that is, it occurs neither free

nor bound in any of the expressions under discussion.

The factorisation of a type A is defined as the sequence A1, . . . , An, where

none of the Ai is a product type or the unit type, such that A is the product of

the Ai up to associativity and neutrality. For example, the type A∗((B∗I)∗C) has

the factorisation (A,B,C) if A, B, and C are not product types. If (Γ ⊢M : A)

and (y1 : A1, . . . , yn : An ⊢ N : B) are sequents such that A1, . . . , An is the

factorisation of A, then let

(let y1, . . . , yn = M inN) =def(let z = M in let y1 = p1(z) . . . yn = pn(z) in N)
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Chapter 4

Example: Partiality

In this chapter, we shall fit categorical models of partiality into our precartesian

framework. With hindsight, many well-known models of partiality are special

precartesian categories: Concrete examples are categories of sets and partial func-

tions, pointed cpo’s and strict continuous functions, and so on. These form pre-

cartesian categories such that every morphism is central and copyable. The total

maps coincide with the discardable maps. Abstract definitions of such special pre-

cartesian categories have been given again and again: pre-dht-categories [Hoe77],

p-categories [Ros86], copy categories (Cockett), g-monoidal categories [CG99].

According to Robinson and Rosolini [RR88], Curien and Obtulowicz [CO86] de-

fined categories that they called ‘precartesian categories’, which are equivalent

to Rosolini’s p-categories with a ‘one-element object’ (i.e. a tensor unit which is

terminal in the subcategory of total maps). I used the name ‘precartesian cate-

gory’ before I heard of this. Luckily, p-categories with a one-element object are a

special case of our precartesian categories, as we shall see in this chapter, so my

unintended re-definition of precartesian categories is rather benign.

We shall begin this chapter by recalling p-categories and how they arise nat-

urally from dominions. Next, we shall specialise the let-calculus to p-categories,

obtaining the p-calculus. Finally, we shall prove soundness and completeness of

the p-calculus with respect to p-categories, and show that completeness holds

even for the class of p-categories that arise from dominions.

4.1 Dominions and p-categories

P-categories arise naturally from dominions.

Definition 4.1. A dominion M on a category C is a collection of monos that

contains all isos and is closed under composition, such that for every m ∈ M and
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f : A - B, the pullback

A′ f ′
- B′

A

m′

?

∩

f - B

m

?

∩

exists and hasm′ ∈ M. We call a category C with a dominion is called a dominion

category.

A dominion category C is deemed to be a category of total maps. From it we

can construct the category Par(C) of partial maps as follows:

Objects: Those of C

Arrows (from A to B): Equivalence classes of spans

A′

A
�

m
⊃

B

f

-

where m ∈ M, f ∈ C(A′, B), and the equivalence is given by considering A′

up to isomorphism. We write [m, f ] for the equivalence class of the above

span.

Composition: Using pullbacks:

A′′

��

A′ �

m
′′ ⊃

B′

f ′

-

A
�

m
⊃

B
�

m
′ ⊃f

-
C

g

-

Identities: Spans [idA, idA].

Note that the closure properties in the definition of a dominion arise directly from

trying to define Par(C) as above.

There is an obvious faithful identity-on-objects functor J : C - Par(C)

that sends a total map f : A - B to the span [idA, f ].

Now suppose that C has finite products. As is well known (see e.g. [RR88]),

Par(C) with the definitions in Figure 4.1 forms a p-category as introduced

in [Ros86]. Here is our version of the definition of a p-category:
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A⊗ B = A× B

I = 1

[m, f ] ⊗ [m′, f ′] = [m×m′, f × f ′]

δ′A = J(δA)

p′A,B = J(pA,B)

q′A,B = J(qA,B)

!′A = J(!A)

Figure 4.1: Defining a p-category from a dominion category with finite products

Definition 4.2. A p-category is a precartesian category such that every morphism

is central and copyable.

Our definition agrees with Rosolini’s except that we have not only projections,

but also a tensor unit and discard map. Therefore, our p-categories should be

equivalent to the ‘precartesian categories’ of Curien and Obtulowicz, as mentioned

in the introduction of this chapter.

A concrete example of a p-category is the category Pfn of sets and partial

functions. This follows immediately from our result that Rel is a precartesian

category and that a relation is a partial function if and only if it is copyable (see

Chapter 2).

Proposition 4.1. If C is a dominion category with finite products, then Par(C)

is a p-category.

4.2 The p-calculus

Obviously it is sound for p-categories to augment the let-calculus with the rules

Γ ⊢M ! central Γ ⊢M ! copyable

Therefore, the equation (let x = M in N) ≡ M [x := N ] can be false only if

the denotation of M is not discardable. In that case it suffices that (Γ, x ⊢

N /x relevant) is true. Therefore, we can abandon judgements that involve

central , copyable, clear , and affine and replace Rule 3.1 by the following two

(where total is an alias for discardable):

Γ, x : A ⊢ N / relevant x

Γ ⊢ (let x = M in N) ≡ N [x := M ] : B
(4.1)
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Γ ⊢M ! total

Γ ⊢ (let x = M in N) ≡ N [x := M ] : B
(4.2)

We can also reduce the rules for precartesian properties to the ones in Figure 4.2.

Of the rules for judgements of the form (Γ ⊢M /ex) we need only the following:

Γ ⊢ N : A
if N has at most one free occurrence of x

Γ ⊢ N / relevant x
(4.3)

To achieve completeness for judgements of the form (Γ ⊢ M ! total), we add the

rule

Γ ⊢ (let x = M in ()) ≡ () : A

Γ ⊢M ! total
(4.4)

which is obviously sound. (As explained in Section 3.6, we could not add such

rules to the let-calculus, because the one for centrality is unsound.) Thus we

arrive at the p-calculus:

Definition 4.3. The p-calculus over a precartesian signature Σ is defined as

follows: Its judgements are those of the form (Γ ⊢ M ≡ N : A), (Γ ⊢ M ! total),

or (Γ ⊢ M / relevant x) (where (Γ ⊢ M : A) and (Γ ⊢ N : A) are sequents of the

let-language over Σ). The rules are those in Figures 4.2 and 3.7 (with E = total),

and Rules 4.1, 4.2, 4.3, and 4.4.

4.3 Soundness and completeness

In this section, we shall prove that the p-calculus is sound and complete for p-

categories with respect to all three kinds of judgements. Moreover, we shall prove

completeness even for p-categories of the form Par(C), where C is a dominion

category with finite products—let’s call such p-categories dominical.

Definition 4.4. A p-theory over a precartesian signature Σ is defined as a col-

lection T of judgements of the p-calculus over Σ such that T is closed under the

deduction rules of the p-calculus, and such that if (Γ ⊢M / relevant x) ∈ T , then

M has at least one free occurrence of x.

Definition 4.5. A p-interpretation of a p-theory T is a precartesian interpreta-

tion K of T which is a p-category.

Definition 4.6. A p-model of a p-theory T over a precartesian signature Σ is a

p-interpretation of Σ that validates all judgements of T .
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x1 : A1, . . . , xn : An ⊢ xi ! total

Γ ⊢M !E Γ, x : A ⊢ N ! total

Γ ⊢ let x = M inN ! total

Γ ⊢ () ! total

Γ ⊢M ! total Γ ⊢ N ! total

Γ ⊢ (M,N) ! total

Γ ⊢M ! total

Γ ⊢ πi(M) ! total

Γ ⊢M1 ! total . . . Γ ⊢Mn ! total
y1 : A1, . . . , yn : An ⊢ f(y1, . . . , yn) ! total for every constant

f : A1, . . . , An - BΓ ⊢ f(M1, . . . ,Mn) ! total

Figure 4.2: Inference rules for totality
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Theorem 4.2 (Soundness). If K is a p-interpretation of a precartesian signa-

ture Σ, then the judgements over Σ that hold in K form a p-theory.

Proof. Let T be the class of judgements over Σ that hold in K. By Theorem 3.2,

T is a let-theory. Because all judgements of the form (Γ ⊢ M ! central) and

Γ ⊢M ! copyable) hold in K, T is also a p-theory.

Theorem 4.3 (Initiality). Let T be a p-theory over a precartesian signature Σ.

Then T has a (term-) p-model KT such that for every precartesian model K of

T there is a unique morphism H : KT
- K of interpretations of Σ.

Proof. Let’s construe T as a let-theory that has all judgements of the form (Γ ⊢

M ! central) and (Γ ⊢ M ! copyable). By Theorem 3.4, T has a precartesian

(term-)model KT such that for every precartesian model K of T there is a unique

morphism H : KT
- K of interpretations of Σ. Because every morphism ofKT

is denotable, the judgements of the form (Γ ⊢M ! central) and (Γ ⊢M ! copyable)

imply that KT is a p-category.

Theorem 4.4 (Completeness). Let T be a p-theory over a precartesian signa-

ture Σ. If a judgement over Σ holds in all p-models of T , then it is a theorem of

T .

Proof. Suppose that (Γ ⊢ M ≡ N : A) holds in all p-models of T . Let K be a

precartesian model of T . All morphisms of K that are denotable by sequents of

the p-calculus over Σ are copyable and central. The morphisms of K that are

copyable and central form a p-category. Therefore (Γ ⊢ M ≡ N : A) holds in

all precartesian models of T . By Theorem 3.3, we have (Γ ⊢ M ≡ N : A) ∈ T .

Now suppose that (Γ ⊢M ! total) holds in all p-models of T . Therefore, it holds

in all precartesian models of T . Because (Γ ⊢M ! total) holds in the term model

KT , we have (Γ ⊢ (let x = M in ()) ≡ () : A) ∈ T . By Rule 4.4, we have

(Γ ⊢ M ! total) ∈ T . If (Γ ⊢ M / relevant x) holds in all p-models of T , then

it holds in KT . Therefore M has at least one free occurrence of x. Therefore

(Γ ⊢M / relevant x) ∈ T .

The next proposition is the key to proving completeness for dominical p-

categories:

Proposition 4.5. Every p-category can be fully embedded into a dominical p-

category by a strict precartesian functor.

This is well known (see e.g. Theorem 1.6 of [RR88]).
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Theorem 4.6 (Completeness). Let T be a p-theory over a precartesian signa-

ture Σ. If a judgement over Σ holds in all dominical p-models of T , then it is a

theorem of T .

Proof. Let (Γ ⊢ M ≡ N : A) be a judgement over Σ that holds in all dominical

p-models of T . Let K be a p-model of T , and let C be a dominion category with

finite products such that K is embedded into Par(C) by a strict precartesian

functor. In Par(C) it holds that (Γ ⊢M ≡ N : A). Because of the embedding, it

holds in K too. So (Γ ⊢ M ≡ N : A) holds in all precartesian models of T , and

by Theorem 4.4 we have (Γ ⊢M ≡ N : A) ∈ T .
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Chapter 5

Precartesian models and monadic
models

As explained in the introduction of this thesis, Eugenio Moggi’s semantics of the

computational lambda-calculus assigns to each sequent (x1 : A1, . . . , xn : An ⊢

M : A) a morphism A1× . . .×An - TB, where × denotes a cartesian product,

and T is the endofunctor of a monad. By contrast, the precartesian semantics in

Figure 2.1 is direct in that it assigns to (x1 : A1, . . . , xn : An ⊢M : A) a morphism

A1 ⊗ . . .⊗An - B. In the introduction, I claimed that precartesian categories

provide the solution X in the diagram

Languages Categories

direct-style
Computational
lambda-calculus

- X

monadic-style
Language with
bind

MS
trans-
form

?

- λC-models
?-

where the diagonal arrow stands for Moggi’s semantics. In this chapter, we shall

prove this using a construction that takes monadic models to direct models. (We

shall construct the direct model by defining extra structure on the Kleisli category
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of the monad.) In particular, we shall extend the semantics in Figure 2.1 to

higher-order operators, obtaining a semantics of the whole computational lambda-

calculus.

Translating monadic models into precartesian models enables us discuss cen-

tral, copyable, and discardable morphisms. Such a discussion can be illuminating,

as we shall see in Chapters 6 and 8.

5.1 Monadic models of the computational

lambda-calculus

In this section we shall recall some basic definitions and observations about mon-

ads, introduce Moggi’s cartesian computational models and λC-models, and fix

the notation.

Definition 5.1. A monad T = (T, η, µ) in a category K consists of a functor

T : K - K and two natural transformations

η : IdK - T, µ : T 2 - T

which make the following diagrams commute

T 3 Tµ - T 2

T 2

µT

? µ - T

µ

?

IdT
ηT - T 2 � Tη

T Id

T

µ

?�
id

id
-

(The square is called the associativity law of the monad, and the two triangles

are called the left and right neutrality laws, respectively.)

Definition 5.2. The Kleisli category KT of a monad T in a category K is defined

as follows (where semicolon denotes the composition of KT , and colon denotes

the composition of K):

Ob(KT ) = Ob(K)

KT (A,B) = K(A, TB)

f ; g = f : Tg : µ

idA = ηA

Definition 5.3. Let KT be the Kleisli category of a monad T in a category K.

Then FT : K - KT is defined as the identity-on-objects functor that sends a

morphism f to (f : η). Moreover, GT : KT
- K is defined as the functor that

sends an object A to TA, and a morphism f of KT to (Tf : µ).
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Observation 5.1. Let KT be the Kleisli category of a monad T in a category K.

Then there is an adjunction

K

FT -
⊥�
GT

KT

such that GTFT = T , the adjunction’s unit is η, the counit is given by εA =def

idTA, and it holds that GT εFT = µ.

Next we shall recall the definition of a strength. The notion of strength is

usually defined for monads on (symmetric) monoidal categories. We generalise it

to precartesian categories.

Definition 5.4. A strength for a monad T on a precartesian category K is a

family of arrows

tA,B : A⊗ TB - T (A⊗B)

which is natural in A and B separately, such that the equations in Figure 5.1

hold. A monad together with a strength is called a strong monad.

Let t′ stand for the symmetric dual of the strength—that is,

(t′ : (TA) ⊗ B - T (A⊗ B)) =def τ ; t;Tτ

where τ is the twist map.

Next we shall present in our terminology Moggi’s definitions of a cartesian

computational model and a λC-model. These structures provide the monadic

semantics of the computational lambda-calculus.

Definition 5.5. A precartesian computational model is a precartesian category

together with a strong monad T in K. A cartesian computational model (in

the sense of Moggi) is a precartesian computational model (K, T ) where K is a

category with finite products.

Definition 5.6. A monad T in a category K is said to have T -exponentials if for

all objects A and B of K there is an exponential object (TB)A.

This means that for all objects A and B, there is an arrow ev : (TB)A ×

A - TB such that for all f : C × A - B there is a unique morphism

λf : C - (TB)A such that

(TB)A × A
ev - B

C ×A

λf × A

6

f

-
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I ⊗ TA
t- T (I ⊗ A)

TA

Tq

?

q
-

(5.1)

(A⊗ B) ⊗ TC
t - T ((A⊗B) ⊗ C)

A⊗ (B ⊗ TC)

α

? A⊗ t- A⊗ T (B ⊗ C)
t- T (A⊗ (B ⊗ C))

Tα

?

(5.2)

A⊗ B

A⊗ TB

A⊗ η

? t- T (A⊗ B)

η

-
(5.3)

A⊗ TB
t - T (A⊗B)

A⊗ T 2B

A⊗ µ

6

t- T (A⊗ TB)
Tt- T 2(A⊗B)

µ

6

(5.4)

Figure 5.1: Axioms for a strength for a monad on a precartesian category
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Rule Syntax Semantics

var

x1 : A1, . . . , xn : An ⊢ xi : Ai = A1 × · · · ×An
πi- Ai

η- TAi

let

Γ ⊢M : A = Γ
f- TA

Γ, x : A ⊢ N : B = Γ × A
g- TB

Γ ⊢ let x = M in N : B = Γ
〈id ,f〉- Γ × TA

t- T (Γ × A)
Tg- TTB

µ- TB

() Γ ⊢ () : unit = Γ
!- 1

η- T1

(−,−)

Γ ⊢M : A = Γ
f- TA

Γ ⊢ N : B = Γ
g- TB

Γ ⊢ (M,N) : A ∗B = Γ
〈f,g〉- TA× TB

ψ- T (A× B)

πi

Γ ⊢M : A1 ∗ A2 = Γ
f- T (A1 ×A2)

Γ ⊢ πi(M) : Ai = Γ
f- T (A1 ×A2)

Tπi- TAi

Figure 5.2: Moggi’s semantics of the computational lambda-calculus: first-order
fragment

Definition 5.7. A precartesian λC-model is a precartesian computational model

(K, T ) with T -exponentials. A λC-model (in the sense of Moggi) is a precartesian

λC-model (K, T ) where K is a category with finite products.

Moggi’s semantics of the computational lambda-calculus using a λC-model

(K, T ) is presented in Figures 5.2–5.4, where ψ =def t
′;Tt;µ and

app =def

(

T ((TB)A) × TA
ψ- T ((TB)A × A)

T ev- T 2B
µ- TB

)
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Rule Syntax Monadic semantics

[−]

Γ ⊢M : A = Γ
f- TA

Γ ⊢ [M ] : TA = Γ
f- TA

η- TTA

µ

Γ ⊢M : TA = Γ
f- TTA

Γ ⊢ µ(M) : A = Γ
f- TTA

µ- TA

Figure 5.3: Moggi’s semantics of the computational lambda-calculus: µ(M) and
[M ]

Rule Syntax Semantics

λ Γ, x : A ⊢M : B = Γ ×A
f- TB

Γ ⊢ λx : A.M : A ⇀ B = Γ
λf- (TB)A

η- T ((TB)A)

app Γ ⊢M : A ⇀ B = Γ
f- T ((TB)A)

Γ ⊢ N : A = Γ
g- TA

Γ ⊢MN : B = Γ
〈f,g〉- T ((TB)A) × TA

app- TB

Figure 5.4: Moggi’s semantics of the computational lambda-calculus: higher-order
structure
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5.2 Precartesian models of the computational

lambda-calculus

We shall define the direct models of the computational lambda-calculus using

three layers:

Computational abstract Kleisli-categories

Precartesian abstract Kleisli-categories

Abstract Kleisli-categories

The hierarchy of direct models corresponds to the following hierarchy of monadic

models:

λC-models

Cartesian computational models

Monads

5.2.1 Closure of precartesian categories under the Kleisli
construction

In this section, we shall see how to construct a precartesian category KT as the

Kleisli category of a strong monad T on a precartesian category K.

Theorem 5.2. Let K = (K,×, 1, δ, p, q, !, T ) be a precartesian computational

model. For objects A, B, C, and morphisms f ∈ KT (A,B), let

A⊗B =def A×B

C ⊗ f =def

(

C × A
C×f- C × TB

t- T (C × B)
)

f ⊗ C =def

(

A× C
f×C- B × TC

t′- T (B × C)
)

Then (KT ,⊗, 1, FT δ, FTp, FT q, FT !) is a precartesian category. Moreover, FT is a

strict precartesian functor that sends central morphisms to central morphisms.

The proof, which is rather technical, can be found in Appendix C.

Remark 5.1. Because of Theorem 5.2, the notion of strong monads now applies to

KT . Because we generalised Moggi’s framework by allowing K to be an arbitrary

precartesian category (as opposed to a category with finite products), we can now

construct yet another precartesian category from any strong monad on KT . This

means for programming-languages that we can now try to add computational

effects successively by iterating the Kleisli construction rather than using ‘monad

transformers’ (we shall discuss this in Section 9.2.4).
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Remark 5.2. The construction of a premonoidal tensor on the Kleisli-category

of a strong monad in a (symmetric) monoidal category is by now well known—

see [PR97]. In fact, Power and Robinson proved a more general theorem (Theorem

4.2 in [PR99]) stating that the Kleisli category of a premonoidal dyad (a kind

of generalised strong monad) on a premonoidal category forms a premonoidal

category. So the only novelty of our Theorem 5.2 is that it deals with precartesian

rather than just premonoidal structure.

Proposition 5.3. Let (K, T ) be a precartesian computational model, and let KT

be the precartesian category that arises as the Kleisli category. Then the precarte-

sian semantics (Figure 2.1) in KT agrees with the monadic semantics (Figure 5.2)

in (K, T ).

Proof. Straightforward.

5.2.2 Abstract Kleisli-categories

In this section, we shall give the direct semantics of the operators µ(−) and [−].

This semantics can be understood even in the absence of a strength and a tensor.

The key observation is that for a category K with a monad T , the adjunction

FT ⊣ GT : KT
- K induces some structure on the Kleisli category: Let

L =def FTGT

ϑA =def FTηA

and let ε be the counit of the adjunction. Then L is and endofunctor on KT , ε is a

natural isomorphism L - Id , and for each object A, we have ϑA : A - LA.

However, ϑ is (fortunately) not generally a natural transformation Id - L ,

as we shall see in Example 5.2. Of course, L, ϑ, and ε satisfy certain equations.

This motivates the following definition:

Definition 5.8. An abstract Kleisli-category is

• A category K

• A functor L : K - K

• A transformation ϑ : Id - L

• A natural transformation ε : L
·- Id
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such that ϑL is a natural transformation L
·- L2, and

Id
ϑ - L Id

ϑ - L L
ϑL - L2

L

ϑ

? ϑL - L2

Lϑ

?
Id

ε

?

id
-

L

Lε

?

id
-

Let’s pronounce ϑ ‘thunk’ and ε ‘force’, agreeing with Hayo Thielecke’s termi-

nology for ⊗¬-categories, which turned out to be abstract Kleisli-categories with

extra structure, as we shall see in Chapter 8.

Example 5.1. Rel (which is isomorphic to the Kleisli category of the covariant

powerset monad (see e.g. [Jac94])). For a set A, let LA be the powerset of A.

For a relation R : A - B, and sets X ⊆ A and Y ⊆ B, let (where R[X] is the

image of X under R)

X(LR)Y ⇔ Y = R[X]

xϑX ⇔ X = {x}

Xεx⇔ x ∈ X

Proposition 5.4. Let K be a category, and let T be a monad on K. Let L =

FTGT , let ϑA = FTηA, and let ε be the counit of the adjunction FT ⊣ GT . Then

(KT , L, ϑ, ε) is an abstract Kleisli-category.

Proof. Let F stand for FT , and G for GT . The square in the definition of an

abstract Kleisli-category, and the naturality of ϑL, follow from applying F to the

naturality squares

A
ηA - GFA

GFA

ηA

? ηFGA- GFGFA

GFη

?

and

GA
ηGA- GFGA

GB

Gf

? ηGB- GFGB

GFGf

?

respectively. The left triangle in the definition of an abstract Kleisli-category is

FA
FηA- FGFA

FA

εFA

?

id
F
A -
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The right triangle follows from applying F to

GA
ηGA- GFGA

GA

GεA

?

id
G
A -

Remark 5.3. For every abstract Kleisli-category, L forms a comonad on K with

comultiplication ϑL and counit ε. (However, this does not seem to matter for

our discussion of semantics. In particular, we shall not need to construct the

co-Kleisli-category in this thesis.)

Before we shall rephrase the semantics of µ(−) and [−] in terms of abstract

Kleisli-categories, let’s make some important definitions and observations:

Definition 5.9. A morphism f : A - B of an abstract Kleisli-category K is

called thunkable if

A
ϑ - LA

B

f

? ϑ - LB

Lf

?

The category Kϑ is defined as the subcategory of K which is determined by all

objects and the thunkable morphisms.

Example 5.2. In Rel , the thunkable morphisms are the total functions. (That

is, they happen to coincide with the focal morphisms.)

Observation 5.5. If KT is the abstract Kleisli-category of a monad T on a category

K, then a morphisms f of KT is thunkable if and only if in K it holds that

f ; ηT = f ;Tη

For a morphism f of an abstract Kleisli-category, let

[f ] =def ϑ;Lf

Let incl : Kϑ
⊂ - K be the inclusion functor.

Observation 5.6. For every abstract Kleisli-category K, there is adjunction

[−] : K(incl(A), B) ∼= (Kϑ)(A,LB)

with unit ϑ and counit ε.
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Rule Syntax Monadic semantics Abstract Kleisli semantics

[−]

Γ ⊢M : A = Γ
f- TA = Γ

f- A

Γ ⊢ [M ] : TA = Γ
f- TA

η- TTA = Γ
[f ]- LA

µ

Γ ⊢M : TA = Γ
f- TTA = Γ

f- LA

Γ ⊢ µ(M) : A = Γ
f- TTA

µ- TA = Γ
f- LA

ε- A

Figure 5.5: Monadic semantics and abstract Kleisli semantics of µ(M) and [M ]

Note that ϑ plays a double rôle in that it determines Kϑ and the adjunction

unit!

Now let T be a monad on a category K, and let KT be the arising abstract

Kleisli-category. Then Moggi’s semantics of expressions of the form µ(M) and

[M ] can be rephrased as in Figure 5.5.

Remark 5.4. A syntactic construction which amounts to almost the same as our

construction of the subcategory of thunkable morphisms is given in Definition 2.8

of [Mog91]: Given a theory T of the ‘simple programming language’ (which is a

precursor of the computational lambda-calculus), Moggi defines a category F(T )

whose objects are the types, and whose morphisms from A to B are equivalence

classes [x : A ⊢M : B]T of sequents such that (x : A ⊢M ↓ B) ∈ T . According to

Moggi’s semantics, (x : A ⊢M ↓ B) states that for the denotation f : A - TB

of (x : A ⊢M : B) there is a g : A - B such that in K it holds that f = g; η.

This implies that f is thunkable in KT . However, it is generally false that every

thunkable morphism f ofKT factors through η inK. Therefore F(T ) corresponds

to a subcategory of Kϑ that may be smaller than Kϑ. A syntactic construction

that corresponds precisely to our construction ofKϑ would use equivalence classes

[x : A ⊢M : B]T of sequents such that

(x : A ⊢ (let x = M in [x]) ≡ [M ] : TB) ∈ T

because that equation states that the denotation of (x : A ⊢M : B) is thunkable.

5.2.3 Precartesian abstract Kleisli-categories

As we have seen in the two preceding sections, if T is a strong monad on a category

K, then KT has a precartesian structure and an abstract Kleisli-structure. In this
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section we shall see how these two structures interact.

Definition 5.10. A precartesian abstract Kleisli-category K is

• A precartesian category K together with

• Operators L, ϑ, and ε such that (K,L, ϑ, ε) is an abstract Kleisli-category

such that the thunkable morphisms are closed under tensor, and all components

of δ, p, q, and ! are thunkable.

Now we are aiming to prove that the Kleisli category KT of a strong monad

T on a precartesian category K forms a precartesian abstract Kleisli-category.

First, an important lemma:

Lemma 5.1. Let K be a precartesian category, let L, ϑ, and ε be such that

(K,L, ϑ, ε) is an abstract Kleisli category. If all morphisms of the form A ⊗ [f ]

or [f ] ⊗ A are thunkable, then the thunkable morphisms are closed under tensor.

Proof. Let f : A - A′ be a thunkable morphism. We have

A⊗ f ;ϑ = A⊗ f ; [id ] = A⊗ f ; [A⊗ [id ];A⊗ ε]

= A⊗ f ;A⊗ [id ]; [A⊗ ε] because A⊗ [id ] is thunkable

= A⊗ [f ]; [A⊗ ε] because f is thunkable

= [A⊗ [f ];A⊗ ε] because A⊗ [f ] is thunkable

= [A⊗ f ] = ϑ;L(A⊗ f)

Remark 5.5. Lemma 5.1 is important in two ways: First, it helps checking that

a structure is a precartesian abstract Kleisli-category. Second, it replaces a con-

ditional requirement (‘if f is thunkable, then so is A ⊗ f ’) by an unconditional

one (‘for all f , A ⊗ [f ] is thunkable’). Therefore, like precartesian categories,

precartesian abstract Kleisli-categories have an axiomatisation that consists only

of equations that are universally quantified over objects and morphisms.

Proposition 5.7. Let (K, T ) be a precartesian computational model, and let L,

ϑ, ε be the abstract Kleisli structure that arises from T . Then (KT , L, ϑ, ε) is a

precartesian abstract Kleisli-category. Moreover, every morphism in the image of

FT is thunkable.
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Proof. Let F stand for FT , and G for GT . Let colon stand for the composition of

K, and semicolon for the composition of KT . Every morphism in the image of F

is thunkable because

Ff ;ϑ = Ff : Gϑ = f : η : Gϑ = f : η : GFη

= f : η : η = F (f : η) = F (η : GFf) = Fη;FGFf = ϑ;LFf

Therefore, all components of δ, p, q, and ! ofKT are thunkable. It remains to prove

that the thunkable morphisms of KT are closed under tensor. By Lemma 5.1, it

suffices to prove that in KT all morphisms of the form A ⊗ [f ] and [f ] ⊗ A are

thunkable. This is so because

A⊗ [f ] = A⊗ FTf = FT (A× f)

Next we shall prove that, if (K, T ) is a cartesian computational model, then all

thunkable morphisms of KT are focal. This implies that it in the computational

lambda-calculus we can substitute expressions of the form [M ] for any variable

(of the same type).

Lemma 5.2. In a precartesian abstract Kleisli-category, if all morphisms of the

form [f ] are focal, then all thunkable morphisms are focal.

Proof. Suppose that all morphisms of the form [f ] are focal. Let f : A - B

be thunkable. It holds that f is central, because for all g : A′ - B′ we have

A⊗ g; f ⊗ B′ = A⊗ g; [f ] ⊗ B′; ε⊗B′

= [f ] ⊗ A′;LB ⊗ g; ε⊗ B′ because [f ] is central

= f ⊗ A′;ϑ⊗A′;LB ⊗ g; ε⊗ B′ because f is thunkable

= f ⊗ A′;B ⊗ g;ϑ⊗ B′; ε⊗ B′ because ϑ = [id ] is central

= f ⊗ A′;B ⊗ g

To see that f is copyable, consider

f ; δ = f ; δ;ϑ⊗ ϑ; id ⊗ ε; ε⊗ id because ϑ = [id ] is central

= f ;ϑ; δ; id ⊗ ε; ε⊗ id because ϑ is copyable

= [f ]; δ; id ⊗ ε; ε⊗ id because f is thunkable

= δ; [f ] ⊗ [f ]; id ⊗ ε; ε⊗ id because [f ] is copyable and central

= δ; [f ] ⊗ f ; ε⊗ id

= δ; id ⊗ f ; f ⊗ id
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A ⇀ B =def (TB)A

(apply ∈ KT ((A ⇀ B) ⊗A,B)) =def

(
ev ∈ K

(
(TB)A × A, TB

))

Λ(f ∈ KT (A⊗B,C)) =def FT (λ(f ∈ K(A×B, TC))

Figure 5.6: Higher-order structure on the precartesian abstract Kleisli-category
of a precartesian λC-model

It holds that f is discardable because

f ; ! = f ;ϑ; ! because ϑ is discardable

= [f ]; ! because [f ] is thunkable

=! because [f ] is discardable

Proposition 5.8. In the precartesian abstract Kleisli-category that arises from a

cartesian computational model, all thunkable morphisms are focal.

Proof. By Lemma 5.2 it suffices to prove that all morphisms of the Kleisli category

of the form [f ] are focal. We have [f ] = FTf . All morphisms of the cartesian

computational model are focal. By Proposition 5.2, FT is a strict precartesian

functor that sends central morphisms to central morphisms. By Proposition 2.2,

FT preserves copyable and discardable morphisms. Therefore, FTf is focal.

5.2.4 Higher-order structure

In this section, we shall provide the direct semantics of the higher-order opera-

tors of the computational lambda-calculus. Let KT be the precartesian abstract

Kleisli-category of a precartesian λC-model (K, T ), and define apply and Λ as in

Figure 5.6. Figure 5.7 shows how to rephrase Moggi’s semantics in terms of the

new operators on KT . As we shall see, KT is closed in the sense of the following

definition:

Definition 5.11. A precartesian abstract Kleisli-category K is called closed if

for each object A the functor (−) ⊗ A : Kϑ
- K has a right adjoint. For this

right adjoint, we shall write A ⇀ (−).

Example 5.3. The category Rel . For sets A and B, let (A ⇀ B) be the set of

relations R ∈ A×B, and let

(R, x)apply y ⇔def xRy

x(ΛR)S ⇔def S = {(y, z) : (x, y)Rz}
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Rule Syntax Semantics

λ Γ, x : A ⊢M : B = ΓA
f- B

Γ ⊢ λx : A.M : A ⇀ B = Γ
Λf- (A ⇀ B)

app Γ ⊢M : A ⇀ B = Γ
f- (A ⇀ B)

Γ ⊢ N : A = Γ
g- A

Γ ⊢MN : B = Γ
〈f,g〉- (A ⇀ B) ⊗ A

apply- B

Figure 5.7: Precartesian semantics of the computational lambda-calculus: higher-
order structure

Remark 5.6. As explained in Observation 5.6, the inclusion functor Kϑ
⊂ - K

has the right adjoint L : K - Kϑ. Because the inclusion functor is naturally

isomorphic to (−) ⊗ I : Kϑ
- K, the functor L : K - Kϑ is naturally

isomorphic to I ⇀ (−). This implies that semantically [M ] is essentially λx :

unit .M , and µ(M) is essentially M().

Next we shall prove that the precartesian abstract Kleisli-category of a pre-

cartesian λC-model is closed. First, a lemma:

Lemma 5.3. If (K, T ) is a precartesian λC-model, then for all objects A, the

functor (FT−) ⊗ A : K - KT has a right adjoint.

Proof. Let (A ⇀ B) and apply be as in Figure 5.6. We shall prove that for all

f ∈ KT (C ⊗A,B) there is a unique solution g of the equation

(A ⇀ B) ⊗A
apply- B

C ⊗A

(FTg) ⊗ A

6

f

-

Let’s write semicolon for the composition of KT , and colon for the composition

of K. The required g is λf , because

(FTg) ⊗A; app = (FTg) ⊗ A : G(ev) = FT (g ×A) : G(ev)

= g × A : η : Gev = g ×A : ev
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Proposition 5.9. If (K, T ) is a precartesian λC-model, then the precartesian

abstract Kleisli-category KT is closed.

Proof. Let F stand for FT , and G for GT . By Lemma 5.3, (F−) ⊗ A has a

right adjoint. Let A ⇀ (−) be this right adjoint, and let apply be the counit of

the adjunction. For each morphism f ∈ KT (C ⊗ A,B) we shall find a unique

thunkable morphism h ∈ KT (C,A ⇀ B) such that

(A ⇀ B) ⊗ A
apply- B

C ⊗ A

h⊗A

6

f

-

Let λ be the adjunction isomorphism KT ((FA) ⊗ B) ∼= K(A,B ⇀ C). Because

Fλf is a solution h, it remains to prove that every thunkable solution h is equal

to Fλf . Consider

Fλf = Fλ(h⊗A; apply) = Fλ([h] ⊗A; ε⊗ A; apply)

= Fλ((Fh) ⊗ A; ε⊗ A; apply)

= F (h : λ(ε⊗A; apply)) naturality of λ

= Fh;Fλ(ε⊗A; apply) = [h];Fλ(ε⊗ A; apply)

= h;ϑ;Fλ(ε⊗ A; apply) because h is thunkable

= h;Fη;Fλ(ε⊗ A; apply)

= h;F (η : λ(ε⊗ A; apply))

= h;F (λ(Fη ⊗A; ε⊗ A; apply)) naturality of λ

= h;F (λ(ϑ⊗A; ε⊗ A; apply))

= h;F (λapply) = h;F id = h

By Proposition 5.8, if (K, T ) is a λC-model, then KT forms a closed precarte-

sian abstract Kleisli-category such that all thunkable morphisms are focal. This is

quite a mouthful. Because in Chapter 7 we shall prove soundness and complete-

ness of the computational lambda-calculus with respect to these models, let’s give

them a shorter name:

Definition 5.12. A computational abstract Kleisli-category is a closed precarte-

sian abstract Kleisli-category such that all thunkable morphisms are focal.
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5.3 Kleisli categories of commutative, affine,

and relevant monads

Next we shall recall what it means for a monad to be commutative, affine, and rel-

evant, and we shall find a striking connection between these three notions and the

notions of centrality, copyability, and discardability. The first three notions are

due to Kock: Commutative monads were first defined in [Koc70], and affine and

relevant ones in [Koc71]—however, this use of the word ‘relevant’ was introduced

only later by Jacobs [Jac94].

Definition 5.13. A strong monad (T, µ, η, t) is on a precartesian category K =

(K,×, 1, δ, p, q, !) is called

• commutative if for all objects A and B, the two maps below agree:

ψ =
(

TA× TB
t′- T (A× TB)

Tt- T 2(A× B)
µ- T (A×B)

)

ψ′ =
(

TA× TB
t- T (TA×B)

Tt′- T 2(A× B)
µ- T (A×B)

)

• affine if η1 : 1 - T1 is an isomorphism

• relevant if the following diagram commutes for all objects A:

TA
δ- TA× TA

T (A×A)

ψ

?

Tδ
-

(5.5)

(There are alternative definitions for affine and relevant monads—for more,

see [Jac94].)

Proposition 5.10. A strong monad T on a category K with finite products is

• commutative if and only if every morphism of KT is central.

• relevant if and only if every morphism of KT is copyable.

• affine if and only if every morphism of KT is discardable.

We shall prove Proposition 5.10 with the help of the following result, which

is interesting in its own right:

Proposition 5.11. In a precartesian abstract Kleisli-categoryKT that arises from

a strong monad T on a category K with finite products,
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• If for all objects A and B the diagram

LA⊗ LB
ε⊗ LB- A⊗ LB

LA⊗B

LA⊗ ε

? ε⊗B- A⊗ B

A⊗ ε

?

(5.6)

commutes, then every morphism is central.

• If εA is copyable for every A, then every morphism is copyable.

• If εA is discardable for every A, then every morphism is discardable.

Proof. For every morphism f ∈ KT (A,A′), it holds that f = [f ]; εA′. Because [f ]

is thunkable, it follows with Proposition 5.8 that [f ] is also focal. Now suppose

that Equation 5.6 holds. For arbitrary morphisms f : A - A′ and g : B - B′

it holds that

f ⊗ id ; id ⊗ g = ([f ]; ε) ⊗ id; id ⊗ ([g]; ε)

= [f ] ⊗ id; ε⊗ id; id ⊗ [g]; id ⊗ ε

= [f ] ⊗ [g]; ε⊗ id; id ⊗ ε by centrality of [g]

Symmetrically, we get

id⊗ g; f ⊗ id = [f ] ⊗ [g]; id ⊗ ε; ε⊗ id

So Equation 5.6 implies that f ⊗ id ; id ⊗ g = id⊗ g; f ⊗ id , and therefore every

morphism is central. The equation f = [f ]; εA′ also imples that f is copyable (or

discardable) if εA′ is.

Proof of Proposition 5.10. It holds that ψ, ψ′ : TA×TB - T (A×B) are equal

to the top-right path and the left-bottom path of Diagram 5.6, respectively. So

the Equation ψ = ψ′ stating that T is commutative is equivalent to Equation 5.6.

Equation 5.5 is equivalent to the equation stating that εA is copyable. That η1 is

an isomorphism is equivalent to 1 being terminal in KT , which is the case if and

only if every morphism of KT is discardable.

5.4 The monadic-style transform

The construction of the Kleisli categoryKT of a precartesian computational model

(K, T ) expresses the morphisms of KT in terms of the structure of K and the
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strong monad T . As explained in the introduction, this construction is the se-

mantic counterpart of the monadic-style transform. In this section, we shall turn

this claim into a precise proposition.

Let K be a λC-model. Let L be the let-language of K, together with the

bind-construct described in Section 1.3.2, types of the form (TB)A denoting T -

exponentials, and terms of the form λx.M and (MN) denoting the corresponding

lambda-operator and application. (These differ conceptually from the lambda

and application operator of the computational lambda-calculus!) Let LT be the

computational lambda-calculus of KT . Let L(Γ, A) be the collection of sequents

(Γ ⊢ M : A) of L, and let LT (Γ, A) is the collection of sequents (Γ ⊢ M : A) of

LT . The monadic-style transform (−)♯ takes every sequent

(x1 : A1, . . . , xn : An ⊢M : A) ∈ LT

to a sequent

(x1 : A♯1, . . . , xn : A♯n ⊢M ♯ : T (A♯)) ∈ L

of L.

In the introduction, we only presented the monadic-style transform for the

first-order fragment of the computational lambda-calculus. The complete version

is presented in Figures 5.9 and 5.8. So for each environment Γ of LT and each

type A of LT , we have a translation

(−)♯ : LT (Γ, A) - L(Γ♯, T (A♯))

Before we state the main proposition of this section, note that the identity

KT (Γ, A) = K(A, T (A♯))

is the defining isomorphism of the adjunction FT ⊣ GT : KT
- K. In agreement

with standard categorical notation, we shall call this isomorphism (−)♯, where the

overloading of (−)♯ is intended.

Proposition 5.12. Let (K, T ) be a precartesian λC-model. Then the following

diagram commutes:

LT (Γ, A)
KT [[−]]- KT (Γ, A)

L(Γ♯, T (A♯))

(−)♯

?
K[[−]]- K(Γ♯, T (A♯))

(−)♯

?

(5.7)

Proof. By induction over (x1 : A1, . . . , xn : An ⊢M : A).
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(A ∗B)♯ = A♯ ∗B♯

unit ♯ = unit

(A ⇀ B)♯ =
(
T

(
B♯

))(A♯)

(TA)♯ = T
(
A♯

)

Figure 5.8: Monadic-style transform: types

x♯ = η(x)
(let x = M inN)♯ =

(
bind x⇐ M ♯ inN ♯

)

()♯ = η()
(M,N)♯ =

(
bind x⇐ M ♯ in bind y ⇐ N ♯ in η(x, y)

)

(πi(M))♯ =
(
bind x⇐ M ♯ in η(πi(x))

)

(f(M1, . . . ,Mn))
♯ =

(

bind x1 ⇐M ♯
1 in . . . bind xn ⇐M ♯

n in f(x1, . . . , xn)
)

[M ]♯ = η
(
M ♯

)

(µ(M))♯ =
(
bind x⇐ M ♯ in x

)

(λx : A.M)♯ =
[
λx : A♯.

(
M ♯

)]

(MN)♯ =
(
bind f ⇐M ♯ in bind y ⇐ N ♯ in (fy)

)

Figure 5.9: Monadic-style transform: terms

81



So it does not matter whether we first apply the precartesian semantics and

then the adjunction isomorphism, or we first apply the monadic-style transform

and then the precartesian semantics. In other words, the monadic-style transform

is the syntactic realisation of the adjunction isomorphism.

Proposition 5.13. Moggi’s semantics of the computational lambda-calculus in a

precartesian λC-model (as presented in Figures 5.4, 5.3, and 5.2) agrees with the

diagonal of Diagram 5.7.

So Moggi’s semantics gives meanings to expressions of the source language of

the monadic-style transform using the model of the target language. In a sense,

it performs a compilation on the fly.
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Chapter 6

Example: Adding global state

In this chapter, we shall discuss a special way of constructing a new precartesian

category from a given precartesian category K: Given an object S of K, we define

a new category KS such that KS(A,B) = K(A× S,B × S) and KS inherits the

composition from K. The idea is that S represents a universe of global states,

and a morphism f ∈ KS(A,B) takes a value of type A, and depending on the

state, produces an output an goes into a new state.

With this simple example, we demonstrate a general method of analysing

implementations of new language features. This method consists of characterising

the central, copyable, and discardable morphisms (or programs) of the new system

in terms the original system. (It is crucial that the original tensor need not be a

cartesian product. Thus we avoid the restriction that the original language has

to be call-by-name or free of computational effects.)

For global state, we shall describe the central, copyable, and discardable mor-

phisms in terms of reading and writing to the store. (For exceptions, they can

be explained in terms of raising, for continuations in terms of jumping, and so

on.) Although the statements of these results are simple, some of the proofs are

almost mind-boggling. It is fascinating, but also sobering, that even in a case as

simple as global state, some straightforward questions are so hard to answer.

The construction K 7→ KS is related with the well-known ‘side-effects’ monad

TX = (X × S)S on a cartesian-closed category K: Because T is strong, (K, T )

forms a precartesian computational model. So by Theorem 5.2, KT forms a

precartesian category. We have KT (A,B) = K(A, (B×S)S) ∼= K(A×S,B×S) =

KS(A,B). One can check that this forms a strict precartesian functorKT
- KS

which is an isomorphism. However, T requires K to have exponentials, which

corresponds to requiring that the original language has a lambda operator. By

contrast, this is unnecessary for the construction K 7→ KS.

Moreover, the construction K 7→ KS is a special case of the construction of the
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Kleisli category of a dyad on K. Dyads where introduced by Fokkinga [Fok94]

as a “least common generalisation of monads and comonads”, and generalised

by Power and Robinson [PR99]. Dyads allow a substantial analysis of the com-

binability of computational effects. (For more on dyads, see Section 9.2.4.) By

contrast, this chapter deals with global state only, and none of our results except

Proposition 6.1 follow from the general theory of dyads.

6.1 Constructing the new system

In this section, we shall construct the precartesian category KS from a precarte-

sian category K and an object S of K. We shall also express this construction in

terms of the let-calculus.

Proposition 6.1. Let K = (K,×, I, δ, p, q, !) be a precartesian category, and let

S be an object of K. Let KS be the category with the same objects as K that has

KS(A,B) = K(A × S,B × S) and inherits composition and identities from K.

For objects A, B, C, and a morphism f : A - B, let

A⊗ B = A×B

C ⊗ f =
(

(C × A) × S ∼= C × (A× S)
C×f- C × (B × S) ∼= (C × B) × S

)

f ⊗ C =
(

(A× C) × S ∼= (A× S) × C
f×C- (B × S) × C ∼= (B × C) × S

)

Let FS : K - KS be the identity-on-objects functor that sends a morphism f

to f × S. Then (KS,⊗, 1, FSδ, FSp, FSq, FS!) is a precartesian category. More-

over, FS is a strict precartesian functor and sends central morphisms to central

morphisms.

Proof. Using Condition 3 of Proposition 2.1.

Next we shall express the construction of KS in terms of the internal languages

(i.e. the let-calculi) of KS and K. Let s and si be variables of type S. Figure 6.1

presents a translation of sequents of the let-calculus of KS into the let-calculus

of K (omitting environments and types). Up to syntax, the target language of

this translation can be almost any programming language. In particular, it can

be a call-by-value language with recursion and computational effects like jumps,

exceptions, and so on. The notion of state on the source language is only limited

by the capacity of the type S of the target language. If the state is kept small in

size, the translation might be reasonable; It is certainly impossible if the state is

the complete state of a realistic computer. At any rate, we are not trying to sell

a compiler—we are analysing the scope of an established mathematical method.
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xs = (x, s)

(let x = M in N)s = (let (x, s′) = Ms in N s′)

()s = ((), s)

(M,N)s = (let (x1, s1) = Ms
1 in let (x2, s2) = Ms1

2 in ((x1, x2), s2))

πi(M)s = (let (x, s′) = Ms in (πi(x), s
′))

f(M1, . . . ,Mn)
s = (let (x1, s1) = Ms

1 in let (x2, s2) = Ms1
2 in

. . . let (xn, sn) = Msn−1

n in f(x1, . . . , xn, sn))

Figure 6.1: The state-passing style transform

Proposition 6.2. Let K be a precartesian category, and let S be an object of K.

Then for every sequent (Γ ⊢M : A) of the let-language for KS, it holds that

KS[[Γ ⊢M : A]] = K[[Γ, s : S ⊢Ms : A ∗ S]]

Proof. By induction over (Γ ⊢M : A).

Letting L and LS be the let-languages of K and KS, respectively, Proposi-

tion 6.2 states that the following diagram commutes:

LS(Γ ⊢ A)
KS[[−]] - KS(Γ, A)

L(Γ, s : S ⊢ A ∗ S)

(−)s

? K[[−]]- K(Γ × S,A× S)

w
w
w
w
w
w
w
w

So the language transform (−)s describes syntactically the construction of KS

from K.

6.2 The precartesian properties of the new sys-

tem

In this section, we characterise all central morphisms, copyable morphisms, and

discardable morphisms of KS. We shall see that there is a fascinating connection

between these three classes and the ways in which expressions can access the

store.

6.2.1 Discardable

Characterising discardability in KS is easier than characterising centrality and

copyability, so we shall use it to warm up.
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Proposition 6.3. Let K be a precartesian category. A morphism f ∈ KS(A,B)

is discardable in KS if and only if in K it holds that

f ; q = q (6.1)

Proof.

f ;F ! = F ! ⇔ f ; ! × S =! × S

⇔ f ; ! × S; q =! × S; q because q : 1 × S - S is an iso

⇔ f ; q = q

In the let-calculus for K, Equation 6.1 is

π2(f(x, s)) ≡ s (6.2)

This implies that f does not write to the store. It also implies that π2(f(x, s)) is

focal in K. For example, f is must not raise an exception or diverge.

6.2.2 Copyable

Next we characterise the copyable morphisms of KS. Here it becomes obvious

that it can be much easier to present a morphism

f : A1 × · · · ×An - B1 × · · · ×Bm

of K (not KS) by a diagram

A1 B1...
...

An

f
Bm

The composition of K is presented by the evident horizontal gluing. This is

a simplification of Jeffrey’s and Schweimeier’s graph presentation described in

Section 1.4, in that we indicate evaluation order in K by the left-to-right order of

the building blocks, rather that using an extra thread that indicates the control

flow. The diagonal δ : A - A× A is presented by

A

A

A
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Projections are presented by ‘wires’ that do not reach the rightmost side of the

diagram. The twist map A×B - B × A is presented by

A B

B A

We shall not bother with a formal semantics of these diagrams, because intuition

should be enough to reconstruct from them the standard categorical notation or

the let-calculus notation.

Proposition 6.4. Let K be a precartesian category. A morphism f ∈ KS(A,B)

is copyable if and only if in K it holds that

B

A

B

S

f

S

=

B

A B

S
f f

S

(6.3)

Proof. By expressing theKS-equation f ;Fδ = Fδ;A⊗f ; f⊗B with the operators

of K.

Note that, for A = B = I, Equation 6.3 states that f is an idempotent on S

in K. In the let-calculus for K, Equation 6.3 is

(let (y, s′) = f(x, s) in (y, (y, s′)))
≡ (let (y, s′) = f(x, s) in (y, f(x, s′)))

(6.4)

Obviously, copyability is considerably more complicated than discardability. The

following proposition helps clarifying the situation:

Proposition 6.5. Let K be a precartesian category, and let f ∈ KS(A,B) be

copyable in K. If f is discardable in KS, then it is copyable in KS.

Proof. First observe that

f(x, s) ≡ (let y = f(x, s) in y)

≡ (let y = f(x, s) in (π1(y), π2(y)))

= (π1(f(x, s)), π2(f(x, s))) because f is copyable in K

≡ (π1(f(x, s)), s) by Proposition 6.3

Now we check Equation 6.4:

(let (y, s′) = f(x, s) in (y, (y, s′)))

≡ (let (y, s′) = (π1(f(x, s)), s) in (y, (y, s′)))
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≡ (let y = π1(f(x, s)) in (y, (y, s)))

≡ (π1(f(x, s)), (π1(f(x, s)), s)) (because π1(f(x, s)) is copyable)

≡ (let y = π1(f(x, s)) in let y′ = π1(f(x, s)) in (y, (y′, s)))

≡ (let (y, s′) = (π1(f(x, s)), s) in

let (y′, s′′) = (π1(f(x, s′)), s′) in (y, (y′, s′′)))

≡ (let (y, s′) = f(x, s) in let (y′, s′′) = f(x, s′) in (y, (y′, s′′)))

≡ (let (y, s′) = f(x, s) in (y, f(x, s′)))

Corollary 6.6. If K is a category with finite products, then in KS all discardable

morphisms are copyable.

6.2.3 Central

Proposition 6.7. Let K be a precartesian category. Then a morphism f ∈

KS(A,A
′) is central in KS if and only if f is central in K and it holds in K that

A A′

S
f

S

S S

=

A A′

S
f

S

S S

(6.5)

Remark 6.1. In the let-calculus for K, Equation 6.5 is

(f(x, s′), s) ≡ (let (y, s′′) = f(x, s) in ((y, s′), s′′)) (6.6)

Proof. f is central in KS if and only if for all g ∈ KS(B,B
′) it holds in K that

A A′

B B′

S
f g

S

=

A A′

B B′

S
g f

S ′

(6.7)

For the ‘only if’, suppose that f is central in KS. To see that f is central in K,

and let h ∈ K(B,B′). Letting g = h× S in Equation 6.7, we get

A A′

B B′h

S
f

S

=

A A′

B B′h

S
f

S ′

This holds if and only if

A A′

S
f

S

B B′h

=

A A′

S
f

S

B B′h
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A A′

B B′

S
f g

S

= f g

= f g by Equation 6.5

= g f because f is central in K

= g f by Equation 6.5

=
g f

Figure 6.2: Proof of the ‘if’ of Proposition 6.7

for all h : B - B′, which means that f is central in K. To get Equation 6.5,

let g = τS,S in Equation 6.7. Thus we get

A A′

S S

S
f

S

=

A A′

S S

S
f

S

Equation 6.5 follows from the naturality of τ . For the ‘if’, let f be central in K,

let g ∈ KS(B,B
′) and consider Figure 6.2.

Next we shall explain what centrality has to do with reading the store and

writing to the store. Let f ∈ KS(A,B). Intuitively, the value of f does not
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depend on the store if in K it holds that

x : A, s : S, s′ : S ⊢ π1(f(x, s)) ≡ π1(f(x, s′)) : B

As a diagram, this is

A B

S
f

S

S

=

A B

S
f

S

S

(6.8)

With Equation 6.2, which characterises discardability in KS, we had found a

condition that seems to imply that a morphism ‘does not write to the store’. The

diagram version of Equation 6.2 is

A

S
f

S
=

A

S S

However, there is another Equation seeming to imply that f does not write:

A B

S
f

S
=

A B

S
f

S (6.9)

In fact Equation 6.9 seems to be a good description of what it means for f not to

write, because here f is neither copied nor discarded (by contrast to Equation 6.2,

where f is discarded, which means that Equation 6.2 is about more than just

writing). However, it is straightforward to check that Equations 6.2 and 6.9 are

equivalent if the precartesian structure of K is a finite-product structure.

Proposition 6.8. Let K be a precartesian category, and let f ∈ KS(A,A
′). Then

Equation 6.5 holds if and only if Equations 6.8 and 6.9 hold.

Proof. The proof for the ‘if’ is presented in Figure 6.3. The proof for the ‘only

if’ is presented in Figure 6.4.

6.2.4 Summary

The special case where K is a category with finite products is summarised in the

following proposition:

Proposition 6.9. Let K be a category with finite products. A morphism f ∈

KS(A,B) is
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A A′

S
f

S

S S

=

f

by Equation 6.9

=

f

=

f

by Equation 6.8

=

f

=
f

by Equation 6.9

Figure 6.3: Proof for the ‘if’ of Proposition 6.8
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f

=
f

=
f

by Equation 6.5

=

f

f =
f

=
f

by Equation 6.5

=
f

Figure 6.4: Proof of the ‘only if’ of Proposition 6.8
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• central in KS if and only if it is discardable in KS and Equation 6.8 holds

• copyable in KS if and only if in K it holds that

x : A, s : S ⊢ f(x, s) ≡ f(x, π2(f(x, s))) : B ∗ S

(in particular, if f is discardable in KS)

Proof. The claim for ‘central’ follows from Proposition 6.7 (using that every mor-

phism of K is central) and Proposition 6.8 (using that, K has finite products,

Equation 6.9 holds if and only if f is discardable in KS). Now for the claim about

‘copyable’. The left side of Equation 6.4 is equal to

(let (y, s′) = f(x, s) in (y, (y, s′)))

≡ (let (y, s′) = (π1(f(x, s)), π2(f(x, s))) in (y, (y, s′)))

(because f is copyable in K)

≡ (let y = π1(f(x, s)) in let s′ = π2(f(x, s)) in (y, (y, s′)))

≡ (let y = π1(f(x, s)) in (y, (y, π2(f(x, s)))))

≡ (π1(f(x, s)), (π1(f(x, s)), π2(f(x, s))))

(because π1(f(x, s)) is copyable in K)

≡ (π1(f(x, s)), f(x, s)) (because f is copyable in K)

The right side of Equation 6.4 is equal to

(let (y, s′) = f(x, s) in (y, f(x, s′)))

≡ (let (y, s′) = (π1(f(x, s)), π2(f(x, s))) in (y, f(x, s′)))

(because f is copyable in K)

≡ (π1(f(x, s)), f(x, π2(f(x, s))))

So if f(x, s) ≡ f(x, π2(f(x, s))) then Equation 6.4 holds. The converse follows

from sending the Equation 6.4 through π2(−) (it is easiest to do this with the

diagram version, Equation 6.3).

The situation in Proposition 6.9 is summarized in Figure 6.5. In fact, all

intersections of areas in Figure 6.5 are inhabited—examples can be found for

K = Set . This is left as an entertaining exercise.

Open proplem 6.1. Are the ‘no-read’ morphisms closed under composition and

tensor? If so, we could add a property no-read to the let-calculus and infer that

property like central or discardable. How could we exploit no-read with respect

to substitution—that his, how would we have to extend Rule 3.1?
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copyable

discardable = no writeno read

central

Figure 6.5: Global state over a category with finite products

6.3 A special embedding

We shall conclude this chapter with an important observation. Construing the

expressions that do not write to the store (in the sense of ‘discardable’) as a sub-

language is a natural thing to do. Mathematically, this corresponds to considering

the embedding from the subcategory (KS)! of discardable morphisms of KS into

KS. By Proposition 3.1, the discardable morphisms form a precartesian category.

Trivially, the embedding is a strict precartesian functor. In this section, we show

that the embedding does not preserve the central morphisms. This contributes to

justifying the generality of our definition of strong precartesian functors. First,

an observation about (KS)!:

Proposition 6.10. If K is a category with finite products and S is an object of

KS, then (KS)! has finite products.

Proof. Proposition 2.1 makes clear that it suffices to prove that all morphisms

of (KS)! are central and copyable in (KS)!. This is intuitively clear: Expressions

that only read should commute with each other with respect to the evaluation

order, and it should not matter if reading happens once or twice. To see that all

morphisms of (KS)! are central in (KS)!, we prove that for all f ∈ (KS)!(A,A
′)

and g ∈ (KS)!(B,B
′) it holds in KS that f ⊗ B;A′ ⊗ g = A ⊗ g; f ⊗ B′. In K,

that equation is Diagram 6.7. In the let-language of K, let fi(x, s) = πi(f(x, s))

and gi(y, s) ≡ πi(g(y, s)). Using that K has finite products, Diagram 6.7 states

(f1(x, s), g1(y, f2(x, s)), g2(y, f2(x, s))) ≡ (f1(x, g2(y, s)), g1(y, s), f2(x, g2(y, s)))
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This equation holds because by Proposition 6.3 we have f2(x, s
′) ≡ s′ and

g2(y, s
′) ≡ s′. Next we prove that every morphism of (KS)! is copyable in (KS)!.

Let f ∈ (KS)!(A,A
′). Using that K has finite products, by Proposition 6.9 f is

copyable if

(f1(x, s), f2(x, s)) ≡ (f1(x, f2(x, s)), f2(x, f2(x, s)))

This equation holds because by Proposition 6.3 we have f2(a, s) ≡ s.

Proposition 6.11. If S is a set with at least two elements,then the embedding

(SetS)!
⊂ - SetS does not preserve central morphisms.

Proof. Let read ∈ KS(1, S) and write ∈ KS(S, 1) be defined by

read((), s) = (s, s)

write(s, s′) = ((), s)

By Proposition 6.3, read is discardable in KS, so by Proposition 6.10 it is central

in (KS)!. Obviously, read does no commute with write, and therefore read is not

central in KS.
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Chapter 7

Soundness and completeness of
the computational
lambda-calculus

As described in Chapter 5, every λC-model (K, T ) induces a computational ab-

stract Kleisli-category KT . By Proposition 5.13, Moggi’s semantics of the compu-

tational lambda-calculus in (K, T ) agrees with the direct semantics in KT . The

computational lambda-calculus is known to be sound and complete for λC-models

(see [Mog88]). So it is complete for computational abstract Kleisli-categories too,

because if a judgement holds in all computational abstract Kleisli-categories, then

in particular it holds in those that arise from λC-models, and therefore it is deriv-

able.

In Section 7.1, we shall prove that the computational lambda-calculus is also

sound for computational abstract Kleisli-categories. To obtain soundness, we shall

prove that every computational abstract Kleisli-category is isomorphic to the com-

putational abstract Kleisli-category KT that arises from a λC-model (K, T ). So

the deduction rules of the computational lambda-calculus hold in every compu-

tational abstract Kleisli-category K, because they hold in the λC-model of which

K is the Kleisli category.

Section 7.1 contains the proof the soundness result. The remaining two sec-

tions deal with issues resulting from Section 7.1: In Section 7.2 we shall compare

the computational lambda-calculus with the let-calculus, and in Section 7.3 we

shall discuss the ‘equalizing requirement’ for monads.
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7.1 Monadic representation of abstract Kleisli-

categories

In this section, we shall extract a λC-model (C, T ) from an arbitrary computa-

tional abstract Kleisli category K and prove that K is isomorphic to the compu-

tational abstract Kleisli-category CT . As we shall see, we can define (C, T ) for

every abstract Kleisli category K—we need the precartesian structure on K only

if we want finite products on C and a strength on T . Apart from its significance

for semantics, this extraction of (C, T ) from an abstract Kleisli category K seems

to be an interesting piece of category theory.

Proposition 7.1. If K = (K,L, ϑ, ε) is an abstract Kleisli-category, then there

is a monad on Kϑ such that the endofunctor Kϑ
- Kϑ is given by L, the unit

is ϑ, and the multiplication is Lε.

Proof. Because ϑL is a natural transformation L - L2, all morphisms in the

image of L are thunkable. Therefore, there is an endofunctor on Kϑ that agrees

with L. Let’s overload L to stand for this endofunctor too. By definition of

Kϑ, ϑ forms a natural transformation IdKϑ

·- L. The associativity law of the

monad follows from the naturality of ε. The left neutrality law is the statement

ϑ;Lε = id , and the right neutrality law follows from sending the equation ϑ; ε =

id through L.

The goal is now to prove that the Kleisli category (Kϑ)L of the monad

(L, ϑ, Lε) on Kϑ is isomorphic to K. For proving soundness, this isomorphism

must preserve all available structure—that is, L, ϑ, and ε. For this purpose, we

shall now define morphisms of abstract Kleisli categories. Like for strong precarte-

sian functors (see Section 2.5), we require morphisms of abstract Kleisli categories

to preserve the structure only up to natural isomorphism.

Definition 7.1. A morphism of abstract Kleisli-categories from K = (K,L, ϑ, ε)

to K ′ = (K ′, L′, ϑ′, ε′) is defined as a functor F : K - K ′ together with a

natural isomorphism F1 : L′F ∼= FL such that the following diagram commutes:

L′F
ε′F - F

F

ϑ′F

6

Fϑ
- FL

Fε

6
F
1

-

F is called strict if F1 is the identity.
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Proposition 7.2. Morphisms of abstract Kleisli-categories preserve thunkable

morphisms. Faithful morphisms of abstract Kleisli-categories reflect thunkable

morphisms.

Proof. Easy, left to the reader.

Theorem 7.3. For every abstract Kleisli-categoryK there is a strict isomorphism

iK : K ∼= (Kϑ)L of abstract Kleisli-categories.

Proof. The isomorphism iK is the identity-on-objects functor that sends a mor-

phism f to [f ]. Its inverse sends a morphism g to g; ε.

Proposition 7.4. If K is a precartesian abstract Kleisli-category such that every

thunkable morphism is focal, then Kϑ together with the monad (L, ϑ, Lε) forms a

cartesian computational model with the strength

tA,B = [A⊗ εB] : A⊗ LB - L(A⊗B)

Proposition 7.5. For every precartesian abstract Kleisli-category K such that

every thunkable morphism is focal, the isomorphism iK : K ∼= (Kϑ)L is a strict

precartesian functor.

Proposition 7.6. If K is a computational abstract Kleisli-category, then the

cartesian computational model (Kϑ, L) forms a λC-model with

(LB)A = (A ⇀ B)

(ev ∈ Kϑ((LB)A ⊗ A,LB)) = [apply ∈ K((A ⇀ B) ⊗A,B)]

λ(f ∈ Kϑ(A⊗ B,LC)) = Λ(f ; ε)

Proposition 7.7. For every computational abstract Kleisli-category K, the iso-

morphism iK : K ∼= (Kϑ)L preserves Λ and apply on the nose.

Theorem 7.8. The computational lambda-calculus is sound and complete for

computational abstract Kleisli categories.

7.2 Conservative extension?

The computational lambda-calculus has all types and terms of the let-language

(plus higher order types—that is TA and A ⇀ B, and higher-order terms—that is

λx.M , (MN), µ(M), and [M ]). In particular, every well-formed equation judge-

ment (Γ ⊢ M ≡ N : A) of the let-language is well-formed in the computational

lambda-calculus too. Therefore, we can compare the derivability relations for
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equation judgements of the two calculi. Formally, given a precartesian signature

Σ, let’s define a derivability relation ⊢let,Σ such that for well-formed equation

judgements X1, . . . , Xn and Y over Σ it holds that

{X1, . . . , Xn} ⊢let,Σ Y

if Y is derivable from X1, . . . , Xn in the let-calculus, and

{X1, . . . , Xn} ⊢λC ,Σ Y

if Y is derivable from X1, . . . , Xn in the computational lambda-calculus.

Proposition 7.9. The computational lambda-calculus is an extension of the let-

calculus in that for every precartesian signature Σ it holds that

⊢let,Σ ⊆ ⊢λC ,Σ

Proof. Suppose that {X1, . . . , Xn} ⊢let,Σ Y . Because the let-calculus is sound for

precartesian categories, Y holds in every precartesian model of {X1, . . . , Xn}. In

particular, Y holds in every precartesian model of {X1, . . . , Xn} which is given by

a computational abstract Kleisli-category. By completeness of the computational

lambda-calculus, it holds that {X1, . . . , Xn} ⊢λC ,Σ Y .

Is this extension conservative—that is, does ⊢let,Σ agree with the the restriction

of ⊢λC ,Σ to first-order expressions (i.e. expressions of the let-language over Σ)?

We shall now reduce that question into a semantic one.

Proposition 7.10. If every precartesian model can be embedded into a compu-

tational abstract Kleisli-category by a strong precartesian functor F with focal F2

and F0, then the extension ⊢let,Σ ⊆⊢λC ,Σ of calculi is conservative.

For the proof of Proposition 7.10 we shall use the following lemma:

Lemma 7.1. Let K be a precartesian interpretation of a precartesian signature

Σ such that the precartesian category K can be embedded into a computational

abstract Kleisli-category K ′ by a strong precartesian functor F with focal F2 and

F0. Let FK be the evident interpretation of Σ that results from applying F after

the interpretation K. Then the extension (FK)[[−]] of FK to the let-language over

Σ is isomorphic to the map F (K[[−]]) in the following sense: For each precartesian

type A over Σ, there is a focal isomorphism

ϕA : (FK)[[A]] ∼= F (K[[A]])
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which is natural in that for every sequent (Γ ⊢M : A) of the let-language over Σ

it holds that

(FK)[[Γ]]
ϕΓ- F (K[[Γ]])

(FK)[[A]]

(FK)[[M ]]

? ϕA- F (K[[A]])

F (K[[M ]])

?

Proof. We define ϕ inductively by

ϕA = idF (K[[A]]) if A is a base type

ϕunit = F0 : I - FI

ϕA∗B = (FK)[[A]] ⊗ (FK)[[B]]
ϕA⊗ϕB- F (K[[A]]) ⊗ F (K[[B]])

F2- F (K[[A]] ⊗ K[[B]])

Because F2 and F2 are focal isomorphisms, so is every component of ϕ. The

naturality of ϕ follows from induction over (Γ ⊢ M : A), using the focality of

ϕ.

Proof of Proposition 7.10. Suppose that for equation judgements X1, . . .Xn and

Y between first-order expression over Σ it holds that X1, . . . , Xn ⊢λC ,Σ Y . Now

let K be a precartesian model of X1, . . . , Xn, let K ′ be a computational abstract

Kleisli-category, and let F : K - K ′ be a faithful strong precartesian functor

with focal F2 and F0. Because of the natural iso ϕ, the interpretation FK is

a model of X1, . . . , Xn. Because the denotational category K ′ of the interpre-

tation FK is a computational abstract Kleisli-category, Y holds under FK (by

soundness of the computational lambda-calculus). Because of the natural iso ϕ,

and because F is faithful, Y holds in K too. So we have proved that Y holds in

every precartesian model of X1, . . . , Xn. By completeness of the let-calculus for

precartesian categories, we have X1, . . . , Xn ⊢let,Σ Y .

In summary, we have reduced the conservativity problem for the extension

⊢let,Σ ⊆⊢λC ,Σ to the following open problem:

Open proplem 7.1. Can every precartesian model be embedded into a computa-

tional abstract Kleisli-category by a strong precartesian functor F with focal F2

and F0?

Perhaps this question can be answered positively with the help of Kan

extensions—trying this is left as a future challenge.

Remark 7.1. For equations X1, . . . , Xn and Y between first-order expressions, let

{X1, . . . , Xn} ⊢λfo,Σ Y
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if Y is derivable from X1, . . . , Xn in the computational lambda-calculus in such a

way that the derivations uses only first-order expressions. Moggi raised the ques-

tion whether the extension ⊢λfo,Σ ⊆⊢λC ,Σ is conservative—in in his terminology

(see [Mog91], top of p. 24):

We do not know. . . whether λCPL is a conservative extension of PL.

Me neither. However, it should hold that

⊢λfo,Σ = ⊢let,Σ

(This should be a rouitine proof, but admittedly, I have not checked.) If so,

then Moggi’s question and our question about the conservativity of the extension

⊢let,Σ ⊆⊢λC ,Σ are equivalent.

7.3 The equalizing requirement

I would like to conclude this chapter with a little mathematical observation. In

some of his articles (e.g. [Mog91]), Moggi discusses the following two properties:

Definition 7.2. A monad T = (T, η, µ) is said to satisfy the mono requirement

if every component of η is a mono. T is said to satisfy the equalizing requirement

if, for each object A, ηA is an equalizer of ηTA and TηA.

Because all equalizers are monos, every monad T in C that satisfies the equal-

izing requirement satisfies the mono requirement. The converse holds if ηA is

regular for every object A—that is, ηA is an equaliser of some pair of monos (see

Lemma 6 on page 110 of [BW85]). All monos of a topos, for example, are regular.

Abstract Kleisli categories make clear how the equalizing requirement enters

semantics:

Theorem 7.11. If K is an abstract Kleisli category, then the monad (L, ϑ, Lε)

on Kϑ satisfies the equalizer requirement. In particular, every abstract Kleisli

category is isomorphic to one (Kϑ)L that arises from a monad that satisfies the

equalizer requirement.

Proof. We prove that in Kϑ the morphism ϑ : A - LA is an equalizer of

LA
ϑLA-
LϑA

- L2A. Clearly, it holds that ϑA;ϑLA = ϑA;LϑA. Now let f ∈ Kϑ(B,LA)

such that

B
f - LA

LA

f

? LϑA- L2A

ϑLA

?

101



commutes. It remains to find a unique g ∈ Kϑ(B,A) such that g;ϑA = f .

Appending εA to both sides of the equation makes clear that we must have g =

f ; εA. And g is indeed a solution, because g;ϑA = f ; εA;ϑA = f ;LϑA; εLA =

f ;ϑLA; εLA = f .

Moggi proved (Proposition 2.9 of [Mog91]) that the monad in the syntactically

defined category F(T ) (see Remark 5.4) satisfies the mono requirement. Because

F(T ) can be smaller that the category of thunkable morphisms (as explained in

Remark 5.4), it was not possible for Moggi to prove the equalizing requirement.
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Chapter 8

Example: Continuations

A good introduction to continuations is describing how they help transforming a

typical programming language into a simpler one. Hayo Thielecke reviewed this

nicely in [Thi99a]:

. . . a function call is transformed into a jump with arguments to the
callee, such that one of the arguments is the return address, i.e., a
continuation that enables the callee to jump back to the caller. To
match this, all function definitions need to be transformed to take
the return address as an extra argument. The systematic addition
of return addresses is described in an early paper by van Wijngaar-
den [vW64], which Reynolds [Rey93] credits with the earliest use of
continuation-passing style. Van Wijngaarden (cited in [Rey93]) de-
scribes the introduction of continuation parameters thus:

’Provide each procedure declaration with an extra formal parameter—
specified label—and insert at the end of its body a goto statement
leading to that formal parameter. Correspondingly, label the state-
ment following a procedure statement, if not labeled already, and
provide that label as the corresponding extra actual parameter.’

In modern terminology, this additional formal parameter is called
a continuation, and the transform that introduces these continua-
tion parameters is called a continuation-passing style (CPS) trans-
form [Ste78].

In this chapter, we study the CPS transform denotationally by construing the

source language as a precartesian category.

8.1 A CPS-transform

Importantly, the target language of a CPS transform can be simpler than the

original language in that its execution does not need a call stack. Thielecke

describes his version of the target language thus [Thi99a]:
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. . . we use as the target language a small calculus idealizing the inter-
mediate language from Appel’s account of the Standard ML of New
Jersey compiler [App92, Thi97a]. A CPS term M consists of a jump
kx1 . . . xn to k with arguments x1 . . . xn, together with some bindings
of the form where fx1 . . . xn = M ′. The grammar is given by the
single rule,

M ::= xx∗(where xx∗ = M)∗

To sketch the intended meaning, it suffices to say here that a jump
should be reduced by fetching the term jumped to, and substitut-
ing the actual parameters for the formal parameters (avoiding name
capture):

fx1 . . . xn . . . where fy1 . . . yn = M . . .

→M [y1 := x1, . . . , yn := xn] . . .where fy1 . . . yn = M . . .

This section describes a CPS-transform of the let-language. As the target lan-

guage, we use Thielecke’s CPS language—for the sake of discussion, a typed

sequent-style version, which is essentially the one described in Thielecke’s the-

sis [Thi97a]. The types of the CPS-language are as follows:

A ::= A1 ∗ · · · ∗ An | unit | int | bool | . . . where n ≥ 0

Here A1 ∗ · · · ∗ An is the type of a continuation k that can be jumped to with

arguments of types A1, . . . , An. The term formation rules are:

Γ, k : A1 ∗ · · · ∗ An, x1 : A1, . . . , xn : An ⊢ k〈x1, . . . , xn〉

Γ, k : A1 ∗ · · · ∗ An ⊢M Γ, x1 : A1, . . . , xn : An ⊢ N

Γ ⊢Mwhere k〈x1, . . . , xn〉 = N

The expressions have no return type, because they do not return—they are run

only for their effect.

Our CPS transform takes a sequent (Γ ⊢ M : A) of the let-language and a

CPS variable k of type A to a sequent (Γ, k : A ⊢ Mk) of the CPS language.

The variable k is deemed to be the default continuation passed by the caller—the

current continuation. We define

xk = k〈x〉

(let x = M in N)k = (M lwhere l〈x〉 = Nk)

()k = k〈〉

104



Because in the let-calculus it holds that

πi(M) ≡ (let x = M in πi(x))

and

(M,N) ≡ (let x = M in let y = N in (x, y))

it suffices explain the transforms of pairs and projections whose arguments are

variables. Let

(x, y)k = k〈x, y〉

πi(x)
k = k〈πi(x)〉

The term k〈πi(x)〉 is not part of the CPS calculus as we have defined it. The

expression πi(x) looks like a procedure call, which the CPS calculus is not sup-

posed to have. However, it is reasonable to assume that πi exists in the CPS

language as a primitive command that needs no calling and returning (e.g. a ma-

chine command picking the right register). We remedy this by augmenting the

CPS language with rules

x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A1 ∗ A2 ⊢ πi(x) : Ai

and replacing the rule for jumps by

Γ ⊢ N1 : A1 . . . Γ ⊢ Nn : An

Γ, k : A1 ∗ · · · ∗ An ⊢ k〈N1, . . . , Nn〉

If the source language of the CPS transform has function types A ⇀ B, like

the computational lambda-calculus, then the transform sends A ⇀ B to A ∗B.

The idea is that a function f : A ⇀ B corresponds to a continuation that can

jumped to with an argument of type A and a B-accepting default continuation.

The CPS-transforms of lambda- and application expressions are

(λx.M)k = (k〈f〉where f〈x, l〉 = M l)

(fx)k = f〈x, k〉

(In analogy to the transforms of pairs and projections, we have (MN)k =

(let f = M in let x = N in fx)k.) The CPS-transform for the whole computa-

tional lambda-calculus is summarised in Figure 8.1.
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xk = k〈x〉

(let x = M in N)k = (M lwhere l〈x〉 = Nk)

()k = k〈〉

(x, y)k = k〈x, y〉

πi(x)
k = k〈πi(x)〉

(λx.M)k = (k〈f〉where f〈x, l〉 = M l)

(fx)k = f〈x, k〉

[M ]k = (k〈f〉where f〈l〉 = M l)

µ(f)k = f〈k〉

Figure 8.1: The CPS transform of the computational lambda-calculus

8.2 callcc and throw

With the CPS transform we can also implement fascinating operators that only

few programming languages have. The most prominent of these operators are

callcc and throw , which are part of Scheme [ADH+98] and the SMLofNJ library

of Standard ML of New Jersey [TL].

To add callcc and throw to the computational lambda-calculus, we add types

of the form A cont , where A is a type, and sequents

Γ ⊢M : A cont ⇀ A

Γ ⊢ callccM : A

Γ ⊢M : A cont Γ ⊢ N : A
for any type B

Γ ⊢ throw MN : B

The idea is that (callcc(λk : A cont .M ′)) binds the current continuation to

the variable k in M ′. Then M ′ can access k using an expression of the form

(throw kN). For example, the program

19 + callcc(λk.8 + throw k 69)

returns 88, because k stands for 19+(−). The return type B of throw is arbitrary,

because (throw MN) does not return and can therefore stand at any position of

an expression.

The CPS transform makes the semantics of callcc and throw precise: It sends

A cont to A, and

(callccf)k = f〈k, k〉

(throw lx)k = l〈x〉
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So callcc copies the current continuation k. The second copy of k becomes the de-

fault continuation of f , whereas the first copy becomes an ordinary argument. By

contrast, throw forgets the current continuation k and invokes the continuation

l which came as an ordinary argument.

8.3 Lambda semantics of the CPS language

As described in the introduction of this chapter, the CPS language has an intuitive

operational semantics. However, we are aiming for a denotational analysis of the

CPS transform. One way goes via a denotational semantics of the CPS language.

Observe that there is an obvious translation of the CPS language into lambda-

expressions:

(k〈N1, . . . , Nn〉)
λ = k(N1, . . . , Nn)

(Mwhere k〈x1, . . . , xn〉 = N)λ = (λk.(Mλ))(λx1, . . . , xn : (Nλ))

Now let R be a type, and define

(
A1 ∗ · · · ∗ An

)λ
= A1 ∗ · · · ∗ An → R

If (x1 : A1, . . . , xn : An ⊢ M) is a sequent of the CPS language, then

(x1 : Aλ1 , . . . , xn : Aλn ⊢ Mλ : R) is a sequent of the lambda calculus. Intu-

itively, R stands for all possible effects of CPS expressions—it is commonly called

the answer type. We define the denotational semantics of the CPS-language as the

translation (−)λ, followed by the denotational semantics of the lambda-calculus.

The lambda-calculus is typically modelled with a cartesian-closed category. How-

ever, the translation (−)λ does not need all exponentials of the form BA, but only

those of the form RA. This leads to the following definition:

Definition 8.1. A response category consists of a categoryK with finite products,

an object R of K, and, for each object A of C, an exponential RA of R by A.

(The term ‘response category’ was suggested to me by Peter Selinger, who also

considered these structures [Sel00].) The object R is commonly called the answer

object. For each object A, let evA : RA×A - R stand for the evaluation map.

For a morphism f : A × B - R, let λf : A - RB stand for the curried

version of f .

Definition 8.2. The denotational semantics of a CPS-sequent (Γ ⊢ M) in a

response category K is defined as the evident semantics of (x1 : Aλ1 , . . . , xn : Aλn ⊢

Mλ : R) in K.
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Remark 8.1. Requiring a response category to have finite products, as opposed to

an arbitrary precartesian tensor, stands in contrast to our previous approach to

target-language semantics, because finite products are sound only for languages

that are call-by-name or effect-free. Here we require finite products only to avoid

mathematical complications. We shall discuss the treatment of more general

target languages in Section 8.7.

8.4 Continuations monads

In this section, we shall construe a response category as a cartesian computational

model.

In a response category K, the map R(−) forms a functor Kop - K, where

Rf = λ(RB × f ; ev)—so we have

RA ×A
ev - R

RB × A

Rf ×A

6

RB × f- RB ×B

ev

6

Remark 8.2. Proving that R(−) is a functor seems to require that λg is central for

all g. This is one of the reasons why we require × to be the cartesian product—an

arbitrary precartesian tensor complicates finding a suitable definition of exponen-

tials.

Let’s overload (−) to stand for R(−). In the lambda-calculus of K, the defini-

tion of the morphism part of (−) looks like this:

f kAxB = k(fx)

Proposition 8.1. A response category K forms a λC-model with the follow-

ing definitions (where Ev and Λ stand for evaluation and Currying for the T -

exponentials).

T = (−) ηAx
AkA = kx µA = ηA

tA,B

(

xA, yB
)

kAB = y
(
λzB .k(x, z)

)

(TB)A = A×B ΛfxA(yB, kC) = f(x, y)k Ev(fAB, xA)kB = f(x, k)

Proof. A routine check in the λβη-calculus.

The monad above is called the continuations monad.
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8.5 Comparing the CPS transform with the

monadic-style transform

The remainder of this chapter is a denotational analysis of the source language

of the CPS transform (here, Moggi’s computational lambda-calculus). There are

four (!) denotational semantics in a response category K:

The first is the CPS transform (−)k, followed by the denotational semantics

(−)λ of the CPS language. The other three use the λC-model (K, T ) that arises

from K. To see this, let’s recall Diagram 5.7:

LT (Γ, A)
KT [[−]]- KT (Γ, A)

L(Γ♯, T (A♯))

(−)♯

?
K[[−]]- K(Γ♯, T (A♯))

(−)♯

?

LT is the computational lambda-calculus of KT , and L is the language with the

bind-construct. The map (−)♯ on the left side is the monadic-style transform (Fig-

ure 5.9). KT [[−]] is the precartesian semantics of LT (Figures 2.1, 5.5, and 5.7).

K[[−]] is the semantics of L in the λC-model (K, T ) (Figures 5.2–5.4). The map

(−)♯ on the right side is the isomorphism of the adjunction FT ⊣ GT . Proposi-

tion 5.12 states that the diagram commutes. Proposition 5.13 states that Moggi’s

semantics is the diagonal of the diagram.

Next we shall see that the CPS semantics agrees with the other three, up to

the bijection

K(Γ × A,R) ∼= K(Γ, A)

This follows from comparing the CPS-transform with the left-bottom path of the

diagram.

Proposition 8.2. Let K be a response category, let (K, T ) be the arising λC-

model, and let M be an expression of the computational lambda-calculus of KT .

Then it holds in K that

(Mk)λ = M ♯k

Proof. In K, we have

(bind x⇐M1 inM2) = λk.M1(λx.M2k)

With this, the claim follows from induction over M and performing routine cal-

culations in the λβη-calculus of K.
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8.6 Precartesian analysis of continuations

We shall now analyse the precartesian structure at the source end of the CPS

transform. For comparison, let’s recall the steps we took for state (Chapter 6):

1. We constructed a new precartesian category KS from an original precarte-

sian category K together with an object S, and we expressed this construc-

tion in terms of a language transform the ‘state-passing style transform’).

2. Next, we characterised what central, copyable, and discardable means in

the new system.

3. We explained what central, copyable, and discardable in KS have to do with

reading the store and writing to the store.

4. Finally, we presented a blob diagram displaying the relation between central,

copyable, and discardable in KS in the simple case where K has finite

products.

For continuations, we have already taken the analogue of the first step by intro-

ducing the CPS transform and the response category K, and constructing the

Kleisli category KT from the λC-model (K, T ). (However, to limit the mathe-

matical complexity, we have been more modest than for state in that we required

K to have finite products, as opposed to an arbitrary precartesian tensor.) In

this section, we shall take the remaining three steps for continuations.

8.6.1 Discardable

That a sequent (Γ ⊢ M : A) of the internal language LT is discardable in KT is

stated by the equation

(let y = M in ()) ≡ ()

Sending this equation through the CPS transform (−)k yields

(M lwhere l〈y〉 = k〈〉) ≡ k〈〉 (8.1)

An example of a non-discardable expression is

M = (throw m 42)

where m is a variable of type int cont . To see this, let E be the context

E[M ] = callcc(λm.let x = M in 0)
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Then the program E[()] returns 0, and E[throw m 42] returns 42. (This experi-

ment can be made in Scheme or Standard ML of New Jersey.) The CPS transform

confirms the difference: The left side of Equation 8.1 is

(m〈42〉where l〈y〉 = k〈〉) ≡ m〈42〉

which is obviously not βη-equivalent to k〈〉.

8.6.2 Copyable

That a sequent (Γ ⊢M : A) of LT is copyable in KT is stated by the equation

(let y = M in (y, y)) ≡ (M,M) (8.2)

Sending this equation through the CPS transform (−)k yields

(M lwhere l〈y〉 = k〈y, y〉) ≡ (M lwhere l〈y〉 = (Mmwhere m〈z〉 = k〈y, z〉)) (8.3)

Intuitively, if M l invokes its default continuation l with y, then left side of the

equation proceeds by passing y twice to the continuation k. By contrast, the right

side proceeds by running Mm again and passes the two values y and v from the

first and second run, respectively, to k.

An example of a non-copyable expression is twicecc (x, h) where x is a variable

of type A, h is a variable of type A cont , and

twicecc (x, h)k =def (k〈x, l〉where l〈y〉 = k〈y, h〉)

In fact, twicecc can also be expressed in terms of callcc and throw (see [Thi97a]).

To see that twicecc is not generally copyable, let M = twicecc (x, h) in Equa-

tion 8.3, apply (−)λ to the resulting equation and observe that the two sides

are not βη-equivalent. Another way to prove this is letting M = twicecc (x, h)

in Equation 8.2 and finding a source language context that distinguishes the

two sides. Thielecke did this for Standard ML of New Jersey and Scheme

(see [Thi97a]).

However, twicecc (x, h) is discardable: Letting M = twicecc (x, h) in Equa-

tion 8.1 and applying (−)λ, the left side reduces to k〈〉.

Remark 8.3. Thielecke dedicated a whole article [Thi99b] to the implications

of using a continuation twice. In that article, he discusses a source-language

expression arg-fc (‘argument of first call’) which—like twicecc —is discardable,

but not copyable. Compared with twicecc , arg-fc is easier to understand in the

source language, but looks more complicated after it has been sent through the

CPS-transform.

111



By contrast to twicecc , the non-discardable expression throw m42 is

copyable—this follows immediately from letting M = (throw m 42) in Equa-

tion 8.3.

An expression which is neither discardable nor copyable is µ(x) (which denotes

the morphism ε). To see this, let M = µ(x) in Equations 8.1 and 8.3. The

resulting two equations, interpreted by (−)λ, don’t hold in the λβη-calculus.

8.6.3 Central and thunkable

Stating in LT that the denotation of a sequent (Γ ⊢ M : A) is central in KT is

saying that for all (∆ ⊢ N : B) ∈ LT such that Γ and ∆ share no variables, it

holds in KT that

(let x = M in let y = N in (x, y))

≡(let y = N in let x = M in (x, y))

Sending this equation through the CPS transform (−)k yields

(M lwhere l〈x〉 = (Nmwhere m〈y〉 = k〈x, y〉))

≡(Nmwhere m〈y〉 = (M lwhere l〈x〉 = k〈x, y〉))
(8.4)

Next we shall get rid of the universal quantifier over N .

Proposition 8.3. The denotation of a sequent (Γ ⊢ M : A) ∈ LT is central in

KT if and only if for a fresh variable z of type B it holds in K that

(M lwhere l〈x〉 = (z〈m〉where m〈y〉 = k〈x, y〉))

≡(z〈m〉where m〈y〉 = (M lwhere l〈x〉 = k〈x, y〉))
(8.5)

Proof. The ‘only if’ follows from letting N = µ(z) in Equation 8.4. The ‘if’ holds

because sending both sides of Equation 8.5 through (. . .where z〈m〉 = Nm) yields

Equation 8.4.

Equation 8.5 means that M l commutes with a jump to an arbitrary z. It is

obvious that M l should have no side-effect, because if z discards m, then the right

side of Equation 8.5 does not run M l at all. In particular, M l should exit via its

default continuation l, because a different exit would mean jumping away before

running z〈m〉. So centrality for continuations is an extremely strong condition.

That the denotation of a sequent (Γ ⊢ M : A) ∈ LT is thunkable in KT is

stated by

(let x = M in [x]) ≡ [M ]
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Sending this through (−)k yields

(M lwhere l〈x〉 = (k〈f〉where f〈m〉 = m〈x〉)) ≡ (k〈g〉where g〈l〉 = M l) (8.6)

Proposition 8.4. If the denotation of (Γ ⊢ M : A) ∈ LT is central in KT , then

it is thunkable.

Proof. Sending Equation 8.5 through (. . .where k〈x, y〉 = y〈x〉) yields

(M lwhere l〈x〉 = (z〈m〉where m〈y〉 = y〈x〉))

≡(z〈m〉where m〈y〉 = My)
(8.7)

Up to renaming variables, this is Equation 8.6.

We shall complete the precartesian analysis by proving that all thunkable

morphisms are focal—that is, KT is a computational abstract Kleisli-category

(see Section 5.2.4). Although this follows directly from Proposition 5.8, it may

be more general to prove this with the CPS transform, because it is not clear

if for ‘impure’ target languages we can still use a continuations monad (see the

discussion at the end of this chapter).

Lemma 8.1. In KT , all morphisms of the form [f ] are focal.

Proof. Morphisms of the form [f ] are denoted by sequents of the form (Γ ⊢ [N ] :

TA). The claim follows from letting M = [N ] in Equations 8.1, 8.3, and 8.5, and

straightforward calculations in the CPS-calculus (interpreted by (−)λ).

Proposition 8.5. All thunkable morphisms of KT are focal.

Proof. Follows directly from Lemmas 5.2 and 8.1. (Lemma 5.2 relies on the fact

that KT is a precartesian abstract Kleisli-category, which is true here where we

started with a response category. I conjecture that Lemma 5.2 still holds if we

construct KT using the CPS transform into an impure target language).

The precartesian analysis is summarised in Figure 8.2.

8.7 Effect-full target languages

Roughly speaking, the CPS language may be implemented on a real machine by

translating jumps of the CPS language to machine jumps, keeping arguments in

machine registers. Therefore, it is reasonable to allow the CPS language to have

commands like

store address,value
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thunkable = central

discardable copyable

all

throw m 42twicecc (x, h)

ε

Figure 8.2: Precartesian analysis for continuations

which writes value into the machine’s memory at address. Such commands could

then be used to implement effects of the source language of the CPS transform.

In the CPS language, store would have the type address× int - 1. (Because

the command returns on the spot, it has a return type and needs no default

continuation.) Obviously, store is not discardable.

The finite products of a response category seem to rule out commands like

store, because every morphism must be discardable. (Similar examples exist for

‘copyable’ and ‘central’.) However, if we allowedK to be an arbitrary precartesian

category, problems arise—for example, for a realistic lambda operator, the unit

of the continuations monad is no longer natural: For a morphism f ∈ K(A,B)

we have

k : B ⊢ f(k) ≡ λx.k(f(x)) : A

x : A ⊢ η(x) ≡ λk.kx : A

Expressing the naturality equation f ; ηB = ηA; f in the let-language of K, using

the β rule (λx.M)N = M [x := N ] only in the safe cases where N is a variable or

a lambda expression, yields

x : A ⊢ (let y = fx in λk.ky) ≡ λk.k(fx) : B
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In a realistic target language, this equation can be false, because the left side of

the equation runs f , whereas the right side does not. So η is not natural, and

therefore our attempt to define a continuations monad fails. One may hope that,

despite this failure, KT is still a category, but it is not (for example, id ; f 6= f).

But these problems may have a solution: It is reasonable to assume that

denotations in K of target-language lambda expressions are focal. So let’s assume

that all such denotations are in a subcategory S with finite products of the focus

ofK. (For example, K might be a computational abstract Kleisli-category.) Then

the data in Proposition 8.1 forms a λC-model on S. From this we could construct

the new system as the Kleisli category ST . This may look like cheating, because

the denotation of store address,value is not in S. But λk.k(store address, value)

is!

Another way of constructing a precartesian category at the source end is

letting a morphism KT (A,B) be an equivalence of CPS terms of the form (x :

A, k : B ⊢ M), where the equivalence is up to realistic equations (e.g. restricted

β and η laws). Such a construction, the ‘CPS term model’, is part of Thielecke’s

thesis [Thi97a].

Also in his thesis, Thielecke defined ⊗¬-categories, which in our terminology

are precartesian categories with some extra operators and axioms. One axiom,

for example, states that all central morphisms are thunkable. (In this Chapter,

we proved this for KT .) Thielecke proved that, if certain equations hold for the

CPS language, then the CPS term model is a ⊗¬-category. I proved [Füh98] that

every ⊗¬-category arises from a response category (via an extended version of

Theorem 7.3 1.

If ⊗¬-categories are to have a good conceptual status, their axioms must hold

even under modest (i.e. realistic assumptions) about the equational laws of the

CPS language. Finding out how robust ⊗¬-categories are remains, at least for

me, a future challenge.

1A very similar result was proved independently by Peter Selinger (Theorem 2.16 in [Sel00])).
Although Selinger’s theorem is for a call-by-name (modelled by ‘control categories’), by a duality
result in [Sel00] it can be translated into a theorem for call-by-value (modelled by ‘co-control
categories’, which are essentially ⊗¬-categories with finite sums).
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Chapter 9

Conclusions and further research

9.1 Conclusions

We have classified and solved the problems caused by procedure calls in direct-

style reasoning about call-by-value programs. One problem was the relevance of

the number of evaluations of procedure arguments. The other problem was the

relevance of the arguments’ evaluation order.

As a semantic solution, we introduced precartesian categories, which we found

by generalising categories with finite products in such a way that equations that

are not valid for call-by-value need no longer hold. Precartesian categories in-

spired the let-calculus, a new kind of calculus for proving equivalences of call-by-

value programs.

The most innovative aspects of the let-calculus seem to be (1) the properties

copyable, discardable, and central , and their inference rules, which resemble ef-

fect systems known from the literature, and (2) the treatment of the evaluation

order—in particular, the property clear . (By contrast, the properties affine and

relevant are well-known.)

It is remarkable that a suitable generalisation of categories with finite prod-

ucts has not been made long ago—in particular given the fact that Rosolini’s

p-categories and their precursors, which deal with the special case of partiality,

showed the direction. Apparently, the difficulty was seeing the need for gener-

alised monoidal tensors that are not functorial in both arguments jointly. This

generalisation came only in the early 90’s, when John Power introduced pre-

monoidal categories.

116



9.2 Directions for further research

9.2.1 Recursion and non-natural traces

An important topic that we have not addressed is recursion. To model re-

cursion in the absence of computational effects (other than non-termination),

Hasegawa [Has97] suggested to use traced symmetric monoidal categories. A trace

one a symmetric monoidal category K is as family of functions

TrXA,B : K(A⊗X,B ⊗X) - K(A,B)

which is natural inX, A, and B, and satisfies certain equations. Using a graphical

presentation, sending a morphism

f
-
-

-
-

X X
A B

through TrXA,B(−) yields

f- -A B

�

For sequents (Γ, x : A ⊢ M : A) and (Γ, x : A ⊢ N : B), the semantics of

(Γ ⊢ letrec x = M inN : B) is presented by

M - N
-Γ A

R
-B

�

In the conclusion of his (award-winning) thesis [Has99], Hasegawa suggested

to generalise traces to symmetric premonoidal categories. This was carried out

in detail by Jeffrey and Schweimeier [Jef98].

The future investigation that I suggest stems from with the breakdown of the

naturality of Tr(−)XA,B in the presence of computational effects: As explained

in [Has97], the naturality in A, B, and X, respectively, is stated by the equations

in Figures 9.1, 9.2, and 9.3. In the presence of computational effects, these
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equations can be false: In the cases of left tightening and right tightening, on

the left side of the equation, f is evaluated as often as g, whereas on the right

side, f is evaluated only once. In the case of sliding, on the left side of the

equation, g is evaluated first, whereas on the right side, f is evaluated first.

I suggest to study what tightening and sliding have to do with the properties

copyable and central . If tightening and sliding cannot be completely understood

in terms of copyable and central , then it may be useful to introduce tightenable

and slideable morphisms, and study their categorical closure properties. These

could inspire useful inference rules that extend the let-calculus to a recursive

let-calculus.

9.2.2 Jeffrey’s premonoidal-copyable morphisms

The elegance of our precartesian framework is slightly spoiled by the fact that

copyable morphisms do not generally form a category. However, this is not a flaw

of precartesian categories, but reflects the fact of life that the sequential composite

of two copyable programs is not generally copyable. During our development of

the let-calculus, the missing closure property forced the unpleasant definition

max{E1, . . . , En} =







E1 ∨ . . . ∨En ∨ copyable
if Ei � central for
more than one i

E1 ∨ . . . ∨En otherwise

It is natural to ask whether there is a property that provides an alternative

to copyable such that the morphisms with that property are closed under com-

position. Alan Jeffrey (private communications) suggested to me the following

definition:

Definition 9.1 (Alan Jeffrey). A morphism f : A - B of a precartesian

is called premonoidal-copyable if for all morphisms g : BC - D the following

diagram commutes:

AC
fC- BC

δC- B2C
Bg- BD

A2C

δC

? AfC- ABC
Ag- AD

fD- BD

id

?

In the let-calculus, if (x : A ⊢ M : B) denotes f and (z : B, y : C ⊢ N : D)

denotes g, this diagram corresponds to the equation

x : A, y : C ⊢(let z = M in (z,N)) ≡

(let z = M in let v = N in (M, v)) : B ∗D
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f
g-- -

�

= - f - g -

�

Figure 9.1: ‘Left tightening’

f
g -- - = g

f-

�
�

- -

Figure 9.2: ‘Right tightening’

fg
-

- -

�

=
f g

-

�

- -

Figure 9.3: ‘Sliding’
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Letting C = I and g = idB shows that every premonoidal-copyable morphism

is copyable. Crucially, Alan Jeffrey proved that the premonoidal-copyable mor-

phisms are closed under composition (and also under tensor).

Unfortunately, premonoidal-copyable morphisms have two drawbacks: First,

their definition involves both evaluation order and evaluation frequency (in the

above equation, M is copied, and it is also made to commute with N in a cer-

tain sense). This stands in contrast to our conceptual separation of evaluation

order and evaluation frequency. Second, one can prove that morphisms that are

premonoidal-copyable and discardable are focal. Therefore, replacing copyable by

premonoidal-copyable would cause a partial collapse of the precartesian cube—

in particular, there would be no precartesian property that corresponds to the

well-motivated property clear .

However, it could be very useful, to add the property premonoidal-copyable to

the let-calculus. This would raise the challenge to find out about the substitution

properties of premonoidal-copyable expressions. (Certainly, we can substitute

them for variables which are both relevant and clear , but can we do better?)

9.2.3 Adding higher-order to the let-calculus

I suggest to add higher-order operators to the let-calculus, model it with computa-

tional abstract Kleisli-categories, and extend the precartesian cube with a fourth

dimension thunkable, where judgements of the form (Γ ⊢M ! thunkable) take over

the rôle of judgements (Γ ⊢M ↓ A) of the computational lambda-calculus.

In every computational abstract Kleisli-category it holds that,

Γ ⊢M ! thunkable

Γ ⊢M ! focal
(9.1)

The naturality of the isomorphism

Λ : K(incl(A) ⊗ B,C) ∼= Kϑ(A,B ⇀ C)

implies that for every thunkable f it holds for all morphisms g that

f ; Λg = Λ(f ⊗ id ; g)

For the calculus this implies that thunkable expressions can be substituted for

variables under lambda-bindings—therefore, they can be substituted for any vari-

able. By contrast, the converse of Rule 9.1 does not hold in every computational

abstract Kleisli-category, and therefore focal expressions cannot generally be sub-

stituted for variables under lambda-bindings.

The suggested extension of the let-calculus, with all details worked out, should

deepen our understanding of higher-order operators for call-by-value languages.
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9.2.4 Precartesian transformers

The basic idea Each of the following constructions takes precartesian cat-

egories with extra structure to precartesian categories (with or without extra

structure):

• The construction of the p-category Par(K) from a category K with finite

products and a dominion (see Chapter 4).

• The construction of the global-state category KS from a precartesian cate-

gory K and an object S of K (see Chapter 6).

• The construction of the Kleisli category KT of a strong monad T on a

precartesian category K (see Theorem 5.2).

• The construction of the Kleisli category of a premonoidal dyad1 on a pre-

cartesian category (see Theorem 4.2 in [PR99]).

• The construction of a new precartesian computational model (K, T ′) from a

given precartesian computational model (K, T ) by applying a monad trans-

former (see below) to T .

To bring all these construction into one framework, I suggest to introduce the

notion of precartesian transformers—that is, functions that map precartesian

categories with extra structure to precartesian categories. (Ideally, such a function

should be a functor on some category whose morphisms are strong precartesian

functors.)

Modularity and dyads Any general account of computational effects raises

the question if and how computational effects can be combined. This problems

falls into the area “Modularity in denotational semantics”.

Since the early 90’s, it has been tried to combine features by using monad

transformers (originally called ‘monad constructions’, see [Mog89]). The idea is

simple: A monad constructor is a function that takes monads to monads. For

example, the monad construction (−)seff for adding global state takes a monad

T to a certain monad that has the endofunctor Tseff (−) = (T ((−) × S))S. The

monad construction (−)excp for adding exceptions takes a monad T to a certain

monad that has the endofunctor Texcp(−) = T ((−)+E). To add both global state

and exceptions, one would start with the identity monad on the original system

and apply (−)excp and (−)seff in the preferred order. (The two results differ, but

1a kind of generalised strong monad, see also Remark 5.2 and the introduction of Chapter 6
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this is realistic for computer science, and not a mathematical problem.) The final

model is provided by the Kleisli category of the resulting monad. The scope of

monad transformers is limited, because the do not change the category (i.e. a

monad T on C sent through a monad transformer is still a monad on C.)

Expressed in the framework of precartesian transformers, a typical modularity

problem would be the following: Let K be a response category with answer object

R like in Chapter 8. (So on K we have the continuations monad, whose functor

is T = RR−

: K - K.) Moreover, let S be an object of K. Luckily, we know

that we can form the precartesian category KT and then the global state category

(KT )S. But what if we want to add state and continuations in the opposite order?

Adding state gives KS, and to proceed, KS must be a response category, or at

least have some structure that enables the construction of a new precartesian

category for continuations. So the challenge here is to ‘lift’ the continuations

structure on K along the state construction to KS.

Such structure lifting is not addressed by monad transformers, because they

do not explain how to lift one monad along another monad’s Kleisli construction.

By contrast, structural lifting has been studied in a more general framework by

Power, Rosolini, and Robinson [Pow99a, PR98, PR99], where—in the most recent

and general version—dyads are lifted along the Kleisli constructions of dyads.

Most generally, a precartesian transformer P should be considered modular

with respect to extra structure of type X if, informally, for each X-structure on a

precartesian category K, P creates an X-structure on PK.

I suggest to study the use of precartesian transformers for dealing with mod-

ularity issues.
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Appendix A

Overview of the let-calculus

central ∧ copyable focal

central central ∧ discardable

copyable copyable ∧ discardable

arbitrary discardable

↓ Φ (order-reversing lattice iso)

relevant arbitrary

linear affine

clear ∧ relevant clear

clear ∧ linear clear ∧ affine

Figure A.1: The precartesian cube (top) and the cube of expression properties
(bottom)
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max{E1, . . . , En} =







E1 ∨ . . . ∨En ∨ copyable
if Ei � central for
more than one i

E1 ∨ . . . ∨En otherwise

x1 : A1, . . . , xn : An ⊢ xi ! focal

Γ ⊢M !E Γ, x : A ⊢ N !F

Γ ⊢ let x = M in N ! max{E,F}

Γ ⊢ () ! focal

Γ ⊢M !E Γ ⊢ N !F

Γ ⊢ (M,N) ! max{E,F}

Γ ⊢M !E

Γ ⊢ πi(M) !E

Γ ⊢M1 !E1 . . . Γ ⊢Mn !En
y1 : A1, . . . , yn : An ⊢ f(y1, . . . , yn) !E for every constant

f : A1, . . . , An - BΓ ⊢ f(M1, . . . ,Mn) ! max{E,E1, . . . , En}

Γ ⊢M !E
If E ≤ E ′

Γ ⊢M !E ′

Figure A.2: Rules for the precartesian cube
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bx(Γ ⊢ y) = ∅

bx(Γ ⊢ let y = M in N) =







∅ if x = y

bx(Γ ⊢M) if x 6∈ FV (N) ∪ {y}

bx(Γ ⊢M) ∪ {Γ ⊢M}

∪bx(Γ, y ⊢ N) if x ∈ FV (N) − {y}

bx(Γ ⊢ ()) = ∅

bx(Γ ⊢ (M,N)) =

{

bx(Γ ⊢M) if x 6∈ FV (N)

bx(Γ ⊢M) ∪ {Γ ⊢M} ∪ bx(Γ ⊢ N) if x ∈ FV (N)

bx(Γ ⊢ πi(M)) = bx(Γ ⊢M)

bx(Γ ⊢ f(M1, . . . ,Mn)) =

{
(bx(Γ ⊢M1) ∪ {Γ ⊢M1}) ∪ . . . ∪ (bx(Γ ⊢Mi−1)
∪{Γ ⊢Mi−1})∪ bx(Γ ⊢Mi) where Mi is the right-
most of the Mj such that x ∈ FV (Mj)

Figure A.3: Definition of bx(N)

Γ ⊢ N : A
if N has at most one free occurrence of x

Γ ⊢ N / relevant x

Γ ⊢ N : A
if N has at least one free occurrence of x

Γ ⊢ N / affine x

Γ ⊢M ! central ∀(Γ ⊢M) ∈ bx(∆ ⊢ N)

∆ ⊢ N / clear x

Γ ⊢ N / arbitrary x

Γ ⊢M /ex Γ ⊢M /e′ x

Γ ⊢M / (e ∧ e′) x

Γ ⊢M /ex
If e ≤ e′

Γ ⊢M /e′ x

(linear =def relevant ∧ affine)

Figure A.4: Rules for the expression properties
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≡ is a congruence

(let y = (let x = M in N) in O) ≡ (let x = M in let y = N in O) (comp)

() ≡ x (1.η)

πi(x1, x2) ≡ xi (×.β)

(π1(x), π2(x)) ≡ x (×.η)

M ≡ N M !E

N !E

Γ ⊢ M !E Γ, x : A ⊢ N /Φ(E)x

Γ ⊢ (let x = M in N) ≡ N [x := M ] : B

(let x = M in (x, x)) ≡ (M,M)

M ! copyable

(let x = M in ()) ≡ ()

M ! discardable

Figure A.5: Remaining rules
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Appendix B

The let-calculus as an internal
language

This chapter contains the proof of the theorems in Section 3.6.

B.1 Proof of Theorem 3.2 (soundness)

Because of Rule 3.1, the let-calculus is very powerful in that it enables very

short proofs. Therefore, proving soundness is harder than proving completeness.

However, reading the soundness proof should be worthwhile, because it improves

fluency in reasoning about realistic call-by-value languages.

Lemma B.1. The rules in Figure 3.2 hold in every precartesian category.

Proof. This follows immediately from the closure properties of the classes of cen-

tral morphisms, copyable morphisms, discardable morphisms, and their intersec-

tions (see Lemma 2.1 and Proposition 3.1).

Lemma B.2. Let K be a precartesian category, let (x1 : A1, . . . xn : An ⊢M : B)

be a sequent of the let-language, let (y1 : B1, . . . , ym : Bm) be an environment, and

let s : {1, . . . , n} - {1, . . . , m} be a function such that Bsi
= Ai. Then in K it

holds that

[[y1 : B1, . . . ym : Bn ⊢M [x1 := ys1, . . . , xn := ysn] : A]]

=
(

B1 . . . Bn
hs- A1 . . . An

[[x1:A1,...,xn:An⊢M :B]]- B
)

where hs is the evident morphism built from diagonals and projections.

Proof. By induction over (x1 : A1, . . . xn : An ⊢M : B).

Corollary B.1 (Semantics of weakening). Let K be a precartesian category,

let (Γ ⊢M : A) be a sequent, let ∆ be an environment that contains all variables
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of Γ. Then in K it holds that

[[∆ ⊢M : A]] =
(

∆
p- Γ

[[Γ⊢M :A]]- A
)

where p : ∆ - Γ is the evident morphism built from projections.

Lemma B.3. In every precartesian category, for constants f of fitting type, it

holds that:

f(x1, . . . , xk,M1, . . . ,Ml, N1, . . . , Nm)

≡ (let y1 = M1 . . . yl = Ml in f(x1, . . . , xk, y1, . . . , yl, N1, . . . , Nm))

Proof. By induction over l.

Lemma B.4. The rules in Figure 3.7, as well as the following rule, hold in every

precartesian category.

M ≡ (let x = M in x) (id)

Proof. Straightforward.

It remains to prove that Rule 3.1 is sound. First we shall collect another few

lemmas:

Lemma B.5. Let K be a precartesian category, and let (Γ ⊢M : A) be a sequent

whose denotation is central. Then for all sequents (Γ ⊢ N : B) and (Γ, x : A, y :

B ⊢ O : C) it holds in K that

Γ ⊢ (let x = M in let y = N in O) ≡ (let y = N in let x = M in O) : C

Proof. Let

(f : Γ - A) =def K[[(Γ ⊢M : A)]]

(g : Γ - B) =def K[[(Γ ⊢ N : B)]]

(h : ΓAB - C) =def K[[Γ, x : A, y : B ⊢ O : C]]

Let ∆ : Γ - ΓΓΓ be the obvious diagonal morphism. Then the two morphisms

K[[Γ ⊢ (let x = M in let y = N in O) : C]]

K[[Γ ⊢ (let y = N in let x = M in O) : C]]

are equal to, respectively,

Γ
∆- ΓΓΓ

ΓfΓ- ΓAΓ
ΓAg- ΓAB

h- C

Γ
∆- ΓΓΓ

ΓΓg- ΓΓB
ΓfB- ΓAB

h- C

Obviously, the two agree if f is central.
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Lemma B.6. In every precartesian category it holds that

(let x = y inM) ≡M [x := y]

Proof. This follows easily from Lemma B.2.

Lemma B.7. In every precartesian category, if z 6∈ FV (M), it holds that

(let z = (y1, . . . , yn) in let z1 = p1(z) . . . zn = pn(z) inM)
≡ (let z1 = y1 . . . zn = y1 inM)

Proof. Straightforward (using Corollary B.1).

Lemma B.8. In every precartesian category, if the denotation of M is copyable

and n ≥ 1, it holds that

(let x = M in (x, . . . , x)
︸ ︷︷ ︸

n times

) ≡ (M, . . . ,M)

Proof. n = 1: By Rule (id).

n n + 1:

(let x = M in ((x, . . . , x), x))

≡ (let x = M in let y = (x, . . . , x) in (y, x)) (Lemma B.3)

≡ (let x = M in let r = x in let s = x in let y = (r, . . . , r) in (y, s))

(Lemma B.6)

≡ (let x = M in let z = (x, x) in let r = π1(z) in let s = π2(z) in

let y = (r, . . . , r) in (y, s)) (Lemma B.7)

≡ (let z = (let x = M in (x, x)) in let r = π1(z) in let s = π2(z) in

let y = (r, . . . , r) in (y, s)) (Rule (comp))

≡ (let z = (M,M) in let r = π1(z) in let s = π2(z) in

let y = (r, . . . , r) in (y, s))

(because the denotation of M is copyable)

≡ (let z = (let u = M in let v = M in (u, v)) in let r = π1(z) in

let s = π2(z) in let y = (r, . . . , r) in (y, s)) (Lemma B.3)

≡ (let u = M in let v = M in let z = (u, v) in let r = π1(z) in

let s = π2(z) in let y = (r, . . . , r) in (y, s)) (Rule (comp))

≡ (let u = M in let v = M in let r = u in

let s = v in let y = (r, . . . , r) in (y, s)) (Lemma B.7)

≡ (let u = M in let v = M in let y = (u, . . . , u) in (y, v))

(Lemma B.6)

≡ (let u = M in let y = (u, . . . , u) in let v = M in (y, v))

(because the denotation of (u, . . . , u) is central)
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≡ (let y = (let u = M in (u, . . . , u)) in let v = M in (y, v))

(Rule (comp))

≡ (let y = (M, . . . ,M) in let v = M in (y, v))

(by induction hypothesis)

≡ ((M, . . . ,M),M) (Lemma B.3)

Now finally the soundness of Rule 3.1. We have to check eight cases, one for

each corner of the precartesian cube. Although the eight checks have similarities

I avoided cross-references to keep reading easy.

Lemma B.9. Rule 3.1 holds in every precartesian category.

Proof. E = arbitrary , e = clear ∧ linear :

N = x: Because of Rule (id).

N = y 6= x: Because (Γ, x ⊢ y / (clear ∧ linear) x) is false.

N = (): Because (Γ, x ⊢ () / (clear ∧ linear) x) is false.

N = (let y = P in Q):

If x 6∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let y = (let x = M in P ) inQ)) (by Rule (comp))

≡ (let y = P [x := M ] in Q)

(because (Γ, x ⊢ P / x (clear ∧ linear)) is true)

≡ (let y = P in Q)[x := M ]

If x ∈ FV (Q) (and therefore x 6∈ FV (P )):

(let x = M in let y = P in Q)

≡ (let y = P in let x = M in Q)

(because the denotation of P is central)

≡ (let y = P in (Q[x := M ]))

(because (Γ, x, y ⊢ Q/x (clear ∧ linear)) is true)

≡ (let y = P in Q)[x := M ]

N = f(M1, . . . ,Mn):

Let i be the j such that x ∈ FV (Mj). Then

(let x = M in f(M1, . . . ,Mn))

≡ (let x = M in let x1 = M1 . . . xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Lemma B.3)

≡ (let x1 = M1 . . . xi−1 = Mi−1 in let x = M in let xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn))

(because (Γ, x ⊢Mj ! central) is true for j < i.)

≡ (let x1 = M1 . . . xi−1 = Mi−1 in let xi = (let x = M inMi) in
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f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Rule (comp))

≡ f(M1, . . . ,Mi−1, (let x = M inMi),Mi+1, . . . ,Mn) (by Lemma B.3)

≡ f(M1, . . . ,Mi−1,Mi[x := M ],Mi+1, . . . ,Mn)

(because (Γ, x ⊢Mi / x (clear ∧ linear)) is true)

≡ f(M1, . . . ,Mi−1,Mi,Mi+1, . . . ,Mn)[x := M ]

N = (M1,M2) and N = πi(P ): Special cases of N = f(M1, . . . ,Mn).

E = discardable, e = clear ∧ affine:

N = (): Because the denotation of M is discardable.

N = x: Because of Rule (id).

N = y 6= x:

(let x = M in y)

≡ (let x = M in let z = () in y)

≡ (let z = (let x = M in ()) in y) (Rule (comp))

≡ (let z = () in y) (because the denotation of M is discardable)

≡ y

N = (let y = P in Q):

If x 6∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let y = (let x = M in P ) inQ)) (by Rule (comp))

≡ (let y = P [x := M ] in Q)

(because (Γ, x ⊢ P / x (clear ∧ affine)) is true)

≡ (let y = P in Q)[x := M ]

If x ∈ FV (Q) (and therefore x 6∈ FV (P )):

(let x = M in let y = P in Q)

≡ (let y = P in let x = M in Q)

(because the denotation of P is central)

≡ (let y = P in (Q[x := M ]))

(because (Γ, x, y ⊢ Q/x (clear ∧ affine)) is true)

≡ (let y = P in Q)[x := M ]

N = f(M1, . . . ,Mn):

Suppose that x ∈ FV (Mi). Then

(let x = M in f(M1, . . . ,Mn))

≡ (let x = M in let x1 = M1 . . . xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Lemma B.3)

≡ (let x1 = M1 . . . xi−1 = Mi−1 in let x = M in let xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn))

131



(because (Γ, x ⊢Mj ! central) is true for j < i.)

≡ (let x1 = M1 . . . xi−1 = Mi−1 in let xi = (let x = M inMi) in

f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Rule (comp))

≡ f(M1, . . . ,Mi−1, (let x = M inMi),Mi+1, . . . ,Mn) (by Lemma B.3)

≡ f(M1, . . . ,Mi−1,Mi[x := M ],Mi+1, . . . ,Mn)

(because (Γ, x ⊢Mi / x (clear ∧ affine)) is true)

≡ f(M1, . . . ,Mi−1,Mi,Mi+1, . . . ,Mn)[x := M ]

Suppose that ∀i.x 6∈ FV (Mi). Then

(let x = M in f(M1, . . . ,Mn))

≡ (let x = M in let z = () in f(M1, . . . ,Mn))

≡ (let z = (let x = M in ()) in f(M1, . . . ,Mn)) (Rule (comp))

≡ (let z = () in f(M1, . . . ,Mn))

(because the denotation of M is discardable)

≡ f(M1, . . . ,Mn)

N = (M1,M2) and N = πi(P ): Special cases of N = f(M1, . . . ,Mn).

E = central , e = linear :

N = x: Because of Rule (id).

N = y 6= x: Because (Γ, x ⊢ y / linear x) is false.

N = (): Because (Γ, x ⊢ () / linear x) is false.

N = (let y = P in Q):

If x 6∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let y = (let x = M in P ) inQ)) (by Rule (comp))

≡ (let y = P [x := M ] in Q) (because (Γ, x ⊢ P / x linear) is true)

≡ (let y = P in Q)[x := M ]

If x ∈ FV (Q) (and therefore x 6∈ FV (P )):

(let x = M in let y = P in Q)

≡ (let y = P in let x = M in Q)

(because the denotation of M is central)

≡ (let y = P in (Q[x := M ])) (because (Γ, x, y ⊢ Q/x linear) is true)

≡ (let y = P in Q)[x := M ]

N = f(M1, . . . ,Mn):

Suppose that x ∈ FV (Mi) (and therefore not in any other FV (Mj)). Then

(let x = M in f(M1, . . . ,Mn)

≡ (let x = M in let x1 = M1 . . . xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Lemma B.3)
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≡ (let x1 = M1 . . . xi−1 = Mi−1 in let x = M in let xi = Mi in

f(x1, . . . , xi,Mi+1, . . . ,Mn))

(because the denotation of M is central)

≡ (let x1 = M1 . . . xi−1 = Mi−1 in let xi = (let x = M inMi) in

f(x1, . . . , xi,Mi+1, . . . ,Mn)) (by Rule (comp))

≡ f(M1, . . . ,Mi−1, let x = M inMi,Mi+1, . . . ,Mn) (by Lemma B.3)

≡ f(M1, . . . ,Mi−1,Mi[x := M ],Mi+1, . . . ,Mn)

(because (Γ, x ⊢Mi / x linear is true)

≡ f(M1, . . . ,Mi−1,Mi,Mi+1, . . . ,Mn)[x := M ]

N = (M1,M2) and N = πi(P ): Special cases of N = f(M1, . . . ,Mn).

E = copyable, e = clear ∧ relevant :

N = x: By Rule (id).

N = y 6= x: because (Γ, x ⊢ y / x (clear ∧ relevant)) is false.

N = (): because (Γ, x ⊢ () / x (clear ∧ relevant)) is false.

N = (let y = P in Q):

If x 6∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let y = (let x = M in P ) inQ)) (by Rule (comp))

≡ (let y = P [x := M ] in Q)

(because (Γ, x ⊢ P / x (clear ∧ relevant)) is true)

≡ (let y = P in Q)[x := M ]

If x 6∈ FV (P ):

(let x = M in let y = P in Q)

≡ (let y = P in let x = M in Q)

(because the denotation of P is central)

≡ (let y = P in (Q[x := M ]))

(because (Γ, x, y ⊢ Q/x (clear ∧ relevant)) is true)

≡ (let y = P in Q)[x := M ]

If x ∈ FV (P ) and x ∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let x = M in let r = x in let s = x in

let y = P [x := r] in (Q[x := s])) (Lemma B.6)

≡ (let x = M in let z = (x, x) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s])) (Lemma B.7)

≡ (let z = (let x = M in (x, x)) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s])) (by Rule (comp))
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≡ (let z = (M,M) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s]))

(because the denotation of M is copyable)

≡ (let z = (let u = M in let v = M in (u, v)) in let r = π1(z) in

let s = π2(z) in let y = P [x := r] in (Q[x := s])) (by Lemma B.3)

≡ (let u = M in let v = M in let z = (u, v) in let r = π1(z) in

let s = π2(z) in let y = P [x := r] in (Q[x := s])) (by Rule (comp))

≡ (let u = M in let v = M in let r = u in let s = v in

let y = P [x := r] in (Q[x := s])) (Lemma B.7)

≡ (let u = M in let v = M in let y = P [x := u] in (Q[x := v]))

(Lemma B.6)

≡ (let u = M in let y = P [x := u] in let v = M in (Q[x := v]))

(because the denotation of P is central, and therefore
the denotation of P [x := u] is central too)

≡ (let y = (let u = M in (P [x := u])) in let v = M in (Q[x := v]))

(by Rule (comp))

≡ (let y = (let x = M in P ) in let x = M in Q)

≡ (let y = P [x := M ] in Q[x := M ])

(because (Γ, x ⊢ P / x (clear ∧ relevant) is true and
(Γ, x, y ⊢ Q/x (clear ∧ relevant)) is true)

≡ (let y = P in Q)[x := M ]

N = f(M1, . . . ,Mn):

Let j1, . . . , jk be the indices i such that x ∈ FV (Mi). Then

(let x = M in f(M1, . . . ,Mn)

≡ (let x = M in let x1 = M1 . . . xn = Mn in

f(x1, . . . , xn)) (by Lemma B.3)

≡ (let x = M in let y1 = x . . . yk = x in let x1 = M ′
1 . . . xn = M ′

n in

f(x1, . . . , xn))

(where M ′
l = Ml[x := yi] if l = ji and M ′

l = Ml otherwise; holds by
Lemma B.6)

≡ (let x = M in let z = (x, . . . , x) in let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.7)

≡ (let z = (let x = M in (x, . . . , x)) in let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (by Rule (comp))

≡ (let z = (M, . . . ,M) in let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.8)

≡ (let z = (let z1 = M . . . zk = M in (z1, . . . , zk)) in

let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.3)
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≡ (let z1 = M . . . zk = M in let z = (z1, . . . , zk) in

let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Rule (comp))

≡ (let z1 = M . . . zk = M in let y1 = z1 . . . yk = zk in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.7)

≡ (let z1 = M . . . zk = M in let x1 = M ′
1[y1 := z1, . . . yk := zk] . . .

xn = M ′
n[y1 := z1, . . . yk := zk] in f(x1, . . . , xn)) (Lemma B.6)

≡ (let y1 = M . . . yk = M in let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn))

≡ (let x1 = M ′′
1 . . . xn = M ′′

n in f(x1, . . . , xn))

(where M ′′
l = (let yi = M inM ′

l ) if l = ji for some i, and M ′′
l = M ′

l = Ml

otherwise. This works because the Ml, and therefore the M ′
l , are central

for l < jk and we have Rule (comp).)

≡ f(M ′′
1 , . . . ,M

′′
n) (Lemma B.3)

≡ f(M ′′′
1 , . . . ,M

′′′
n )

(where M ′′′
l = M ′

l [yi := M ] if l = ji for some i, and M ′′′
l = M ′′

l =
M ′

l = Ml otherwise. This works because for l = ji it is true that (Γ ⊢
Ml / (clear ∧ relevant) x), and therefore it is true that (Γ ⊢M ′

l / (clear ∧
relevant) yi).)

≡ f(M1, . . . ,Mn)[x := M ]

(because M ′
l [yi := M ] = Ml[x := M ] for l = ji.)

N = (M1,M2) and N = πi(P ): Special cases of N = f(M1, . . . ,Mn).

E = central ∧ copyable, e = relevant :

N = x: Because of Rule (comp).

N = y 6= x: Because (Γ ⊢ y / x relevant) is false.

N = (): Because (Γ ⊢ () / x relevant) is false.

N = (let y = P in Q):

If x 6∈ FV (Q):

(let x = M in let y = P in Q)

≡ (let y = (let x = M in P ) inQ)) (by Rule (comp))

≡ (let y = P [x := M ] in Q) (because (Γ, x ⊢ P / x relevant) is true)

≡ (let y = P in Q)[x := M ]

If x 6∈ FV (P ):

(let x = M in let y = P in Q)

≡ (let y = P in let x = M in Q) (because the denotation of M is central)

≡ (let y = P in (Q[x := M ])) (because (Γ, x ⊢ Q/x relevant) is true)

≡ (let y = P in Q)[x := M ]

If x ∈ FV (P ) and x ∈ FV (Q):

(let x = M in let y = P in Q)
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≡ (let x = M in let r = x in let s = x in

let y = P [x := r] in Q[x := s]) (Lemma B.6)

≡ (let x = M in let z = (x, x) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s])) (Lemma B.7)

≡ (let z = (let x = M in (x, x)) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s])) (by Rule (comp))

≡ (let z = (M,M) in let r = π1(z) in let s = π2(z) in

let y = P [x := r] in (Q[x := s]))

(because the denotation of M is copyable)

≡ (let z = (let u = M in let v = M in (u, v)) in let r = π1(z) in

let s = π2(z) in let y = P [x := r] in (Q[x := s])) (by Rule B.3)

≡ (let u = M in let v = M in let z = (u, v) in let r = π1(z) in

let s = π2(z) in let y = P [x := r] in (Q[x := s])) (by Rule (comp))

≡ (let u = M in let v = M in let r = u in let s = v in

let y = P [x := r] in (Q[x := s])) (Lemma B.7)

≡ (let u = M in let v = M in let y = P [x := u] in (Q[x := v]))

(Lemma B.6)

≡ (let u = M in let y = P [x := u] in let v = M in (Q[x := v]))

(because the denotation of M is central)

≡ (let y = (let u = M in (P [x := u])) in let v = M in (Q[x := v]))

(by Rule (comp))

≡ (let y = (let x = M in P ) in let x = M in Q

≡ (let y = P [x := M ] in Q[x := M ]

(because it is true that (Γ, x ⊢ P / x relevant) and
(Γ, x, y ⊢ Q/x relevant))

≡ (let y = P in Q)[x := M ]

N = f(M1, . . . ,Mn):

Let j1, . . . , jk be the indices i such that x ∈ FV (Mi). Then

(let x = M in f(M1, . . . ,Mn))

≡ (let x = M in let x1 = M1 . . . xn = Mn in f(x1, . . . , xn))

(by Lemma B.3)

≡ (let x = M in let y1 = x . . . yk = x in let x1 = M ′
1 . . . xn = M ′

n in

f(x1, . . . , xn))

(where M ′
l = Ml[x := yi] if l = ji and M ′

l = Ml otherwise; holds by
Lemma B.6)

≡ (let x = M in let z = (x, . . . , x) in let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.7)

≡ (let z = (let x = M in (x, . . . , x)) in let y1 = p1(z) . . . yk = pk(z) in
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let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (by Rule (comp))

≡ (let z = (M, . . . ,M) in let y1 = p1(z) . . . yk = pk(z) in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.8)

≡ (let z = (let z1 = M . . . zk = M in (z1, . . . , zk)) in

let y1 = p1(z) . . . yk = pk(z) in let x1 = M ′
1 . . . xn = M ′

n in

f(x1, . . . , xn)) (Lemma B.3)

≡ (let z1 = M . . . zk = M in let z = (z1, . . . , zk) in

let y1 = p1(z) . . . yk = pk(z) in let x1 = M ′
1 . . . xn = M ′

n in

f(x1, . . . , xn)) (Rule (comp))

≡ (let z1 = M . . . zk = M in let y1 = z1 . . . yk = zk in

let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn)) (Lemma B.7)

≡ (let z1 = M . . . zk = M in let x1 = M ′
1[y1 := z1, . . . yk := zk] . . .

xn = M ′
n[y1 := z1, . . . yk := zk] in f(x1, . . . , xn)) (Lemma B.6)

≡ (let y1 = M . . . yk = M in let x1 = M ′
1 . . . xn = M ′

n in f(x1, . . . , xn))

≡ (let x1 = M ′′
1 . . . xn = M ′′

n in f(x1, . . . , xn))

(where M ′′
l = (let yi = M inM ′

l ) if l = ji for some i, and M ′′
l = M ′

l = Ml

otherwise. This works because the denotation of M is central and we
have the Rule (comp).)

≡ f(M ′′
1 , . . . ,M

′′
n) (Lemma B.3)

≡ f(M ′′′
1 , . . . ,M

′′′
n )

(where M ′′′
l = (M ′

l [yi := M ]) if l = ji for some i, and M ′′′
l = M ′′

l = M ′
l =

Ml otherwise. This works because (Γ ⊢Ml / x relevant) is true for l = ji
for some i.)

≡ f(M1, . . . ,Mn)[x := M ] (because M ′
l [yi := M ] = Ml[x := M ])

N = (M1,M2) and N = πi(P ): Special cases of N = f(M1, . . . ,Mn).

E = central ∧ discardable, e = affine:

Suppose that (Γ, x ⊢ N / linear x) is true. Then—as shown—it is true that

(let x = M in N) ≡ N [x := M ] because M is central. If x 6∈ FV (N), then

(let x = M in N)

≡ (let x = M in let z = () in N)

≡ (let z = (let x = M in ()) inN)

≡ (let z = () in N)

≡ N

≡ N [x := M ]

E = focal , e = arbitrary :

Suppose that (Γ, x ⊢ N / affine x) is true. Then—as shown—it is true
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that (let x = M in N) ≡ N [x := M ] because M is central and discard-

able. If (Γ, x ⊢ N / relevant x) is true, then—as shown—it is true that

(let x = M in N) ≡ N [x := M ] because M is central and copyable.

E = copyable ∧ discardable, e = clear :

Suppose that (Γ, x ⊢ N / (clear ∧ affine) x) is true. Then—as shown—it

is true that (let x = M in N) ≡ N [x := M ] because M is discardable. If

(Γ, x ⊢ N / (clear ∧ relevant) x) is true, then—as shown—it is true that

(let x = M in N) ≡ N [x := M ] because M is copyable.

B.2 Proof of Theorems 3.3 and 3.4 (complete-

ness and initiality)

In this section, we shall define a translation from precartesian categorical expres-

sions like (A ⊗ B) ⊗ I and f ; g; δ into types and sequents, respectively, of the

let-language. This translation is the inverse of the semantics in a sense that we

shall make precise. From this we shall prove completeness and thus establish the

let-calculus as an internal language.

Definition B.1. The precartesian categorical expressions over a precartesian sig-

nature Σ = (B,K) are defined inductively by

f =idA | f ; f |A⊗ f | f ⊗A | δA | pA,B | qA,B | !A | K

where A and B range over the precartesian types over B, subject to the obvious

type constraint for semicolon.

Figure 2.1 (which displays the semantics of the let-language) also has a reading

as a syntactic translation from sequents into precartesian categorical expressions.

Let’s write c for this translation. Now we turn to defining the inverse of c—

let’s call it c′. For each precartesian signature Σ, the translation c′ takes each

precartesian categorical expression f : A - B to a sequent (x1 : A1, . . . , xn :

An ⊢M : B), where A1, . . . , An is the factorisation of A. It proceeds by recursion

over precartesian categorical expressions as in Figure B.1 (where −→x stands for

the obvious tuple formed by the xi). Lemmas B.10 and B.14 below state that the

translations c and c′ are essentially inverse.

Lemma B.10. In every precartesian category, for every precartesian categorical

expression m, letting i be the evident iso built from associativity and neutrality

maps, it holds that

c(c′(m)) = i;m
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c′(f : A - B) = x1 : A1 . . . , xn : An ⊢ f(x̄) : A
if f is a constant

c′(f : A - B) = Γ ⊢ M : B
c′(g : B - C) = y1 : B1, . . . , yn : Bn ⊢ N : C

c′(f ; g : A - C) = Γ ⊢ let y1, . . . , yn = M in N : C

c′(id : A - A) = x1 : A1 . . . , xn : An ⊢ −→x : A

c′(f : A - B) = Γ ⊢ M : B
c′(C ⊗ f : C ⊗ A - C ⊗ B) = y1 : C1, . . . , yn : Cn,Γ ⊢ (−→y ,M) : C ∗ B

c′(f : A - B) = Γ ⊢ M : B
c′(f ⊗ C : A ⊗ C - B ⊗ C) = Γ, y1 : C1, . . . , yn : Cn ⊢ (M,−→y ) : B ∗ C

c′(δ : A - A ⊗ A) = x1 : A1 . . . , xn : An ⊢ (−→x ,−→x ) : A ∗ A

c′(p : A ⊗ B - A) = x1 : A1 . . . , xn : An, y1 : B1, . . . , yn : Bm ⊢ −→x : A

c′(q : A ⊗ B - A) = x1 : A1 . . . , xn : An, y1 : B1, . . . , yn : Bm ⊢ −→y : B

c′(! : A - I) = x1 : A1 . . . , xn : An ⊢ () : unit

Figure B.1: Translating precartesian categorical expressions into the let-language
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Proof. By induction over m.

Lemma B.11. In the let-calculus it is derivable that

let x1, . . . , xn = y1, . . . , yn inM ≡M [x1 := y1, . . . , xn := yn]

Lemma B.12. In the let-calculus, it is derivable that

(x1, . . . , xk,M1, . . . ,Ml, N1, . . . , Nm)

≡ (let y1 = M1 . . . yl = Ml in (x1, . . . , xk, y1, . . . , yl, N1, . . . , Nm))

Moreover, for all constants f of fitting type, it is derivable that

f(x1, . . . , xk,M1, . . . ,Ml, N1, . . . , Nm)

≡ (let y1 = M1 . . . yl = Ml in f(x1, . . . , xk, y1, . . . , yl, N1, . . . , Nm))

Lemma B.13. Let y1, . . . , yl be variables such that yi has type Bi, and let M

have type B1 ∗ · · · ∗Bl. Then in the let-calculus it is derivable that

(let x1, . . . , xk, y1, . . . , yl, z1, . . . , zm = (u1, . . . , uk,M, v1, . . . , vm) inN)

≡ (let y1, . . . , yl = M in N [x1 := u1, . . . , xk := uk, z1 := v1, . . . , zm := vm])

Proof. Straightforward using Lemma B.12.

Lemma B.14. Let (Γ ⊢M : A) be a sequent such that, letting (x1 : A1, . . . , xn :

An) =def Γ, none of the Ai is a product type or the unit type. Let M ′ be defined

by

(Γ ⊢M ′ : A) =def c
′(c(Γ ⊢M : A))

Then it is derivable in the let-calculus that

Γ ⊢M ′ ≡M : A

Proof. By induction over (Γ ⊢M : A), using Lemmas B.11, B.12, and B.13.

Definition B.2. For a let-theory T over a precartesian signature Σ, the binary

relation ≈T on the precartesian categorical expressions over Σ is defined as follows:

Let m ≈T n if and only if, letting (Γ ⊢M : A) = c′(m) and (Γ ⊢ N : A) = c′(n),

we have (Γ ⊢M ≡ N : A) in T .

Proposition B.2 (Term model). Let T be a let-theory over a precartesian

signature Σ. Then ≈T is a congruence, and the congruence classes form a model

of T .

Proof. The relation ≈ is a congruence because ≡ is a congruence. So we have

a graph whose nodes are the precartesian types over Σ, and whose arrows are

≈T -classes of precartesian categorical expressions over Σ, and on this graph we
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have well-defined operators like sequential composition of arrows, tensor, and so

on. To see that we have a precartesian category, by Condition 3 of Proposition 2.1

it suffices to check the following equations: First, the one stating that we have a

binoidal category. Second, the equations stating the naturality of the associativity

map, the twist map, and the neutrality maps. Third, the three equations for each

of δ, p, q, and ! that state focality. Fourth, the equations from Condition 2 of

Proposition 2.1. Fifth and last, the equations stating that the twist map is self-

inverse and that the associativity maps are copyable and inverse to one each other.

Each such equation m = n is checked by deriving in the let-calculus the equation

which is the image of m = n under c′. Checking the details is straightforward

(use Lemmas B.11, B.12, and B.13).

Let’s call our precartesian category KT . It remains to prove that KT is a

model of T . To see this, let (Γ ⊢M ≡ N : A) ∈ T , and let m =def c(Γ ⊢ M : A)

and n =def c(Γ ⊢ N : A). We need to prove that m ≈T n. So let (Γ ⊢ M ′ :

A) =def c
′(m) and (Γ ⊢ N ′ : A) =def c

′(n). We need (Γ ⊢M ′ ≡ N ′ : A) ∈ T . This

is so because, by Lemma B.14, we have (Γ ⊢M ≡M ′ : A) and (Γ ⊢ N ≡ N ′ : A)

in T , and ≡ is transitive. Now for judgements of the form (Γ ⊢ M !E). Let

m =def c(Γ ⊢ M : A). To start with, let E = central . We must prove that m is

central in KT . So for all n : ∆ - B the diagram

Γ ⊗ ∆
m⊗ ∆- A⊗ ∆

Γ ⊗B

Γ ⊗ n

? m⊗B- A⊗ B

A⊗ n

?

must commute. Letting (Γ ⊢M ′ : A) =def c
′(m) and (∆ ⊢ N : B) =def c

′(n), this

amounts to proving that

(let x = M ′ in let y = N in (x, y)) ≡ (let y = N in let x = M ′ in (x, y))

is in T . By Lemma B.14, (Γ ⊢ M ≡ M ′ : A) ∈ T , and therefore it suffices to

prove that

(let x = M in let y = N in (x, y)) ≡ (let y = N in let x = M in (x, y))

is in T . This follows from (Γ,∆, x ⊢ let y = N in (x, y) / linear x) ∈ T . Similar

arguments work for the remaining seven E. Now for judgements of the form

(Γ ⊢ M /ex). The cases e = arbitrary , e = affine, and e = relevant are trivial.

Now let e = clear . If (Γ ⊢ M / clear x) ∈ T , then for all (∆ ⊢ N) ∈ bx(Γ ⊢ M)

we have (∆ ⊢ N ! central) ∈ T . Therefore, as shown above, the denotation
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of (∆ ⊢ N) in KT is central, and therefore (Γ ⊢ M / clear x) holds in KT .

Now suppose that (Γ ⊢ M / (e1 ∧ e2) x) ∈ T . Because e1 ≤ e and e2 ≤ e,

we have (Γ ⊢ M /e1 x) ∈ T and (Γ ⊢ M /e2 x) ∈ T . Reasoning inductively,

we can assume that (Γ ⊢ M /e1 x) and (Γ ⊢ M /e1 x) hold in KT . Therefore

(Γ ⊢M / (e1 ∧ e2) x) too holds in KT .

Definition B.3. For every let-theory T , let KT be the model induced by ≈T .

Proof of Theorem 3.3. If (Γ ⊢ M ≡ N : A) holds in every model of T , then it

holds in KT . By definition of KT , letting m =def c(Γ ⊢M : A) and n =def c(Γ ⊢

N : A), we have m ≈T n. By definition of ≈T , letting (Γ ⊢ M ′ : A) =def c
′(m)

and (Γ ⊢ N ′ : A) =def c
′(n), we have (Γ ⊢ M ′ ≡ N ′ : A) ∈ T . By Lemma B.14,

we have (Γ ⊢M ≡M ′ : A) and (Γ ⊢ N ≡ N ′ : A) in T . Transitivity of ≡ implies

(Γ ⊢M ≡ N : A) ∈ T .

Proof of Theorem 3.4. Let K be a model of T , and let H : KT
- K be a

morphism of interpretations of Σ. For each precartesian categorical expression m

over Σ, because KT [[m]] = [m]≈T
, it holds that H([m]≈T

) = K[[m]]. So it remains

to prove that this makes H well defined. To see this, let m ≈T n. By definition

of ≈T , letting (Γ ⊢ M : A) =def c
′(m) and (Γ ⊢ N : A) =def c

′(n), we have

(Γ ⊢ M ≡ N : A) ∈ T . Soundness implies K[[Γ ⊢ M : A]] = K[[Γ ⊢ N : A]],

and therefore c(c′(m)) = c(c′(n)) holds in K. By Lemma B.10, in K we have

c(c′(m)) = i;m and c(c′(n)) = i;n. By transitivity and cancelling i, we have

m = n in K.

Towards a proof of Conjecture 3.1

Here is an argument why Conjecture 3.1 should be true. Suppose that T is

a let-theory over a precartesian signature Σ. Let J be a judgement that holds

in every model of T . First, suppose J is of the form (Γ ⊢ M ! copyable) (or

(Γ ⊢ M ! discardable)). Because J holds in the term model KT , the judgement

(Γ ⊢ (let x = M in (x, x)) ≡ (M,M) : A ∗ A) (or (Γ ⊢ (let x = M in ()) ≡ () :

unit)) is in T . By one of the two rules at the bottom of Figure 3.7, J is in T .

Now suppose that J = (Γ ⊢ M ! central). To create some awareness, I’ll first

describe a failing attempt of proving J ∈ T : Because J holds in KT , the following

judgement is in T for all N with no free occurrence of x:

(let x = M in let y = N in (x, y)) ≡ (let y = N in let x = M in (x, y)) (B.1)

We could deduce J ∈ T if we had the rule
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(let x = M in let y = N in (x, y)) ≡ (let y = N in let x = M in (x, y))
for all N in
which x is
not free

M ! central

(B.2)

But we didn’t include this rule into the let-calculus—wisely so, because it is not

sound: Equation B.1 does not guarantee that the denotation of M is central,

because a model of T can have morphisms that are not denotable by any N .

However, completeness for centrality judgements should hold even without

Rule B.2. To see this, let T ′ be the theory that results from T by adding a new

constant f : unit - unit , together with equations

(let x = f() in let y = N in (x, y)) ≡ (let y = N in let x = f() in (x, y)) (B.3)

for every (Γ ⊢ N ! central) ∈ T . The term model KT ′ is a model of T . (The

key point here is that, if (Γ ⊢ N ! central) ∈ T , then the denotation of N in KT ′

is indeed central, because of Equation B.3.) In particular, J holds in KT ′ , and

therefore M is central in KT ′ . So the judgement

(let x = f() in let y = M in (x, y)) ≡ (let y = M in let x = f() in (x, y)) (B.4)

is in T ′. Because f is a new constant, M either contains no constants, or Equa-

tion B.4 got into KT ′ as one of the Equations B.3. (While this seems obvi-

ous, it is not clear to me how to prove it.) In either case, it holds that (Γ ⊢

M ! central) ∈ T . Completeness for judgements of the form (Γ ⊢ M / relevant x)

and (Γ ⊢ M / affine x) is trivial, and completeness for judgements of the form

(Γ ⊢ M / clear x) follows directly from completeness for judgements of the form

(Γ ⊢M ! central).
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Appendix C

Proofs

C.1 Proof of Proposition 2.1

We have 1⇒4 because the focus is a subcategory of the centre. Proving 2⇒1 is

easy. To see 4⇒3, let C be the subcategory of the centre like in Condition 4.

The components of δ, p, q, and ! are focal because they are morphisms of C and

every morphism of C is focal (central because C is a subcategory of the centre;

copyable and discardable because of the finite products on C). The equations as

in Condition 2 hold because C has finite products. For the same reason we have

the equations about the twist map and the associativity maps. Now for 3⇒2. To

see that the centre is closed under ⊗, let f : A - A′ be a central morphism. We

prove that for each object B the morphism fB is central. So let g : C - C ′.

The following diagram commutes because the associativity map α is a natural iso

and f is central:

(AB)C
(fB)C - (A′B)C

A(BC)
f(BC)-

α

-

A′(BC)
�

α

A(BC ′)

A(Bg)

? f(BC ′)- A′(BC ′)

A′(Bg)

?

(AB)C ′

(AB)g

? (fB)C ′
-

�

α
−
1

(A′B)C ′

(A′B)g

?

α −
1

-

(C.1)
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The next diagram commutes because the twist map τ is a natural iso and Dia-

gram C.1 commutes:

C(AB)
C(fB) - C(A′B)

(AB)C
(fB)C-

τ

-

(A′B)C
�

τ

(AB)C ′

(AB)g

? (fB)C ′
- (A′B)C ′

(A′B)g

?

C ′(AB)

g(AB)

? C ′(fB) -
�

τ
−
1

C ′(A′B)

g(A′B)

?

τ −
1

-

Therefore, fB is central. A symmetric argument works for Bf . Next we shall

prove that if f : A - A′ is discardable, then so is fB. First, note that the

transformation p is natural in its first argument, because

fB; pA′,B = fB;A′!; pA′,I = A!; fI; pA′,I = A!; pA,I ; f = pA,B; f

Therefore

fB; ! = fB; p; ! = p; f ; ! = p; ! =!

A symmetric argument works for Bf . Next we shall prove that if f : A - A′

is copyable, then so is fB. Consider the following diagram, where

xA,A′ = (AA′)(BB)
α−1

- ((AA′)B)B
αB- (A(A′B))B

(Aτ)B- (A(BA′))B
α−1B- ((AB)A′)B

α- (AB)(A′B)
(C.2)
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AB
δ - (AB)(AB)

(AA)B
(AA)δ-

δB

-

(AA)(BB)

xA,
A

-

(AA′)B

(Af)B

? (AA′)δ- (AA′)(BB)

(Af)(BB)

? xA,A′

- (AB)(A′B)

(AB)(fB)

?

(A′A′)B

(fA′)B

? (A′A′)δ- (A′A′)(BB)

(fA′)(BB)

?

A′B

fB

? δ -

δB
-

(A′B)(A′B)

(fB)(A′B)

?

x
A ′,A ′

-

(C.3)

The two middle squares commute because δ is central. The left square commutes

because f is copyable. The two right squares commute because the associativity

and twist maps from which x is built are natural. To see that the upper square

commutes, we first collect some intermediate results:

1. The associativity map is focal.

2. A morphism of the form A(Bf) is copyable if and only if (AB)f is copyable.

3. Every morphism of the form qC or Cp is copyable.

4. The twist map is copyable.

5. A morphism of the form fA is copyable if and only if Af is copyable.

6. Every morphism of the form Aδ is copyable.

Claim 1 holds because by assumption α is copyable, and applying the shown

closure properties of the discardable and central morphisms to α = 〈p; p, 〈p; q, q〉〉

implies that α is discardable and central. Claim 2 holds because the associativity

map is copyable and natural. Claim 3 holds because qA,BC = α; qA,BC, and α and

q are focal, and a symmetric argument works for Cp. Now for Claim 4. We have

τAB = δ; qA,B(AB);BpA,B. By Claim 3, qA,B(AB) and BpA,B are copyable. So

they are focal, and therefore τ is focal, and in particular, copyable. Claim 5 follows

from Claim 4 and the naturality of τ . Claim 6 holds because AδB = δAB; (AB)q;α,
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and δ, (AB)q, and α are focal. Now we divide the map xA,A in the upper square of

Diagram C.3 into five morphisms like in Definition C.2. Using the six intermediate

results enumerated above, one can check that the resulting triangles with common

vertex AB that divide the upper square of Diagram C.3 commute. The same

argument work for the bottom square of Diagram C.3.

C.2 Proof of Theorem 5.2

In this proof, let’s write semicolon for the composition of KT , and colon for

the composition of K. Moreover, let F stand for FT , and G for GT . We use

Condition 3 of Proposition 2.1. First we prove that KT together with ⊗ forms a

binoidal category. A⊗ (−) is a functor because

A⊗ idB = A⊗ ηB

= A× ηB : tA,B by definition of ⊗

= ηA×B by Equation 5.3

= idA⊗B

and for morphisms B
f- C

g- D of KT it holds that

A⊗ f ;A⊗ g = A⊗ f : T (A⊗ g) : µ

= A× f : tA,C : T (A× g) : TtA,D : µ by definition of ⊗

= A× f : A× Tg : tA,TD : TtA,D : µ because t is natural

= A× f : A× Tg : idA × µD : tA,D by Equation 5.4

= A× (f ; g) : tA,D

= A⊗ (f ; g) by definition of ⊗

By the dual argument, (−) ⊗ A too is a functor. F strictly preserves the tensor

because

F (A× f) = A× f : ηA×C

= A× f : A× ηC ; tA,C by Equation 5.3

= A× Ff : tA,C

= A⊗ Ff by definition of ⊗
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Next we prove that F sends central morphisms to central morphisms. Let f ∈

K(A,A′) be central, and let g ∈ KT (B,B′). Then

(Ff) ⊗ B;A′ ⊗ g = F (f × B);A′ ⊗ g

= f × B : ηA′×B : G(A′ ⊗ g)

= f × B : A′ ⊗ g

= f × B : A′ × g : tA′,B′

= A× g : f × TB′ : tA′,B′ because f is central

= A× g : tA,B′ : T (f ×B′) by naturality of t

= A⊗ g : T (f ×B′)

= A⊗ g : GF (f ×B′)

= A⊗ g;F (f × B′)

= A⊗ g; (Ff) ⊗B′

F preserves copyable morphisms too, because for every copyable f ∈ K(A,B) it

holds that

Ff ;Fδ = F (f : δ)

= F (δ : A× f : f ×B) because f is copyable

= Fδ;F (A× f);F (f × B)

= Fδ;A⊗ Ff ;Ff ⊗ B

F preserves discardable morphisms, because for every discardable morphism f of

K it holds that

Ff ;F ! = F (f :!) = F !

Therefore, all components of Fδ, Fp, Fq, and F ! are focal. The equations in

Condition 2 hold because they hold in K and F strictly preserves all structure.

Now let α : (A×B)×C - A× (B×C) and α′ : A× (B×C) - (A×B)×C

be the associativity maps of K, and let τ : A× B - B × A be the twist map

of K. Because F strictly preserves all operators, the associativity maps of K

are equal to Fα and Fα′, respectively, and the twist map of K is equal to Fτ .

Because α and α′ are copyable and inverse to each other, the same holds for Fα

and Fα′. Because τ is self-inverse, the same holds for Fτ . So it remains to prove

that the associativity, neutrality, and twist maps of KT are natural in each of
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their arguments. For the neutrality map Fq : 1 ⊗ A - A, we have

1 ⊗ f ;Fq = 1 ⊗ f : GFq

= 1 ⊗ f : Tq

= 1 × f : t : Tq

= 1 × f : q by Equation 5.1

= q : f because q is natural

= q : η : Gf

= Fq : Gf

= Fq; f

The naturality of Fp : A ⊗ 1 - A follows from the dual argument. For the

naturality of Fτ , consider

f ⊗ B;Fτ = f ⊗ B : GFτ

= f ⊗ B : Tτ

= f × B : t′ : Tτ

= f × B : τ : t

= τ : B × f : t because τ is natural

= τ : B ⊗ f

= τ : η : G(B ⊗ f)

= Fτ ;B ⊗ f

For naturality of Fα, let f ∈ KT (C,C ′). Then

(A⊗ B) ⊗ f ;Fα = (A×B) ⊗ f : Tα

= (A×B) × f : t : Tα

= (A×B) × f : α : A× t : t by Equation 5.2

= α : A× (B × f) : A× t : t because α is natural

= α : A× (B ⊗ f) : t

= α : A⊗ (B ⊗ f)

= α : η : G(A⊗ (B ⊗ f))

= Fα;A⊗ (B ⊗ f)
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The naturality in the first argument follows from the dual argument. For natu-

rality in the second argument, let f ∈ KT (B,B′) and consider

Fα;A⊗ (f ⊗ C)

= F (τ × C : α : B × τ : α : τ);A⊗ (f ⊗ C) by coherence of K

= Fτ ⊗ C;Fα;B ⊗ Fτ ;Fα;Fτ ;A⊗ (f ⊗ C)

= Fτ ⊗ C;Fα;B ⊗ Fτ ;Fα; (f ⊗ C) ⊗A;Fτ by naturality of Fτ

= Fτ ⊗ C;Fα;B ⊗ Fτ ; f ⊗ (C ⊗A);Fα;Fτ by naturality of Fα

in the first argument

= Fτ ⊗ C;Fα; f ⊗ (A⊗ C);B′ ⊗ Fτ ;Fα;Fτ by centrality of Fτ

= Fτ ⊗ C; (f ⊗ A) ⊗ C;Fα;B′ ⊗ Fτ ;Fα;Fτ by naturality of Fα

in the first argument

= (A⊗ f) ⊗ C;Fτ ⊗ C;Fα;B′ ⊗ Fτ ;Fα;Fτ by centrality of Fτ

= (A⊗ f) ⊗ C;F (τ × C : α : B′ × τ : α : τ)

= (A⊗ f) ⊗ C;Fα by coherence of K
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