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Abstract

Understanding procedure calls is crucial in computer science and everyday pro-
gramming. Among the most common strategies for passing procedure argu-
ments (‘evaluation strategies’) are ‘call-by-name’, ‘call-by-need’; and ‘call-by-
value’, where the latter is the most commonly used. While reasoning about
procedure calls is simple for call-by-name, problems arise for call-by-need and
call-by-value, because it matters how often and in which order the arguments of
a procedure are evaluated.

We shall classify these problems and see that all of them occur for call-by-
value, some occur for call-by-need, and none occur for call-by-name. In that
sense, call-by-value is the ‘greatest common denominator’ of the three evaluation
strategies.

Reasoning about call-by-value programs has been tackled by Eugenio Moggi’s
‘computational lambda-calculus’, which is based on a distinction between ‘values’
and arbitrary expressions. However, the computational lambda-calculus deals
only implicitly with the evaluation order and the number of evaluations of pro-
cedure arguments. Therefore, certain program equivalences that we should be
able to spot immediately require long proofs. We shall remedy this by introduc-
ing a new calculus—the ‘let-calculus™—that deals explicitly with evaluation order
and the number of evaluations. For dealing with the number of evaluations, the
let-calculus has mechanisms known from linear, affine, and relevant logic. For
dealing with evaluation order, it has a mechanism which seems to be completely
new.

We shall also introduce a new kind of denotational semantics for call-by-value
programming languages. The key idea is to consider how categories with finite
products are commonly used to model call-by-name languages, and remove the
axioms which break for call-by-value. The resulting models we shall call ‘precarte-
sian categories’. These relatively simple structures have remarkable mathematical
properties, which will inspire the design of the let-calculus.

Precartesian categories will provide a semantics of both the let-calculus and
the computational lambda-calculus. This semantics not only validates the same
program equivalences as Moggi’s monad-based semantics of the computational
lambda-calculus; It is also ‘direct’ by contrast to Moggi’s semantics, which implic-

itly performs a language transform. Our direct semantics has practical benefits:



It clarifies issues that are related with the evaluation order and the number of
evaluations of procedure arguments, and it is also very easy to remember.

The thesis is rounded up by three applications of the let-calculus and pre-
cartesian categories: First, construing well-established models of partiality (i.e.
categories of generalised partial functions) as precartesian categories, and special-
ising the let-calculus accordingly. Second, adding global state to a given compu-
tational system and construing the resulting system as a precartesian category.
Third, analysing an implementation technique called ‘continuation-style trans-
form’ by construing the source language of such a transform as a precartesian

category.
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Chapter 1

Introduction

1.1 Procedure calls and equational reasoning

Almost every programming language has procedures that accept zero, one, or
more arguments. Some procedures are part of the language itself, like the two-
argument +, some are provided by libraries, like printf in C, and new procedures
may be defined by the user. Understanding procedure calls is obviously crucial in
computer science and everyday programming. At a first glance, reasoning about
procedure calls seems simple. Deceptively so, because it matters how often and

in which order the arguments of a procedure are evaluated.

1.1.1 Number of evaluations

For example, compare the procedures p1 and p2 in the following piece of JAVA

code, where p is a given procedure that accepts and integer and returns an inte-
ge

Example 1.1 (JAVA).
int pil(int x) { return q(px)); }
int q(int y) { return y+y; }

int p2(int x) { return p(x)+p(x); 1}

One might be misled to conclude that p1 and p2 behave in the same way. Now
suppose that the definition of p is

int p(int x) { print("hello!"); return x; }

Given an argument n, both pl and p2 return the value 2n. However, p1l prints

"hello!” once, whereas p2 prints "hello!” twice: In the body of p1, p(x) is

lprint is supposed to be defined in terms of System.out.print in the obvious way
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evaluated once (before the call of q), and in the body of p2, p(x) is evaluated
twice (before the call of +). This is so because JAVA’s evaluation strategy (for
arguments of basic types like int and bool) is call-by-value—that is, before each
procedure call, all arguments are evaluatedé.

If the evaluation strategy was call-by-need, then p1 and p2 would behave like
in the call-by-value case, but for different reasons: p(x) would not be evaluated
before it is passed to q. However, the side effect would happen when the first y
is evaluated, and not for the second y. In p2, the side effect would occur twice
because there is no sharing between the two copies of p(x).

If the evaluation strategy was call-by-name, p1 and p2 would behave the same,
because passing p(x) to q can be seen as the formal substitution of p(x) for y.

We can write counterparts of pl and p2 in almost every programming
language—their behaviours depend only on the evaluation strategy. In Stan-
dard ML (SML), for example, we can eliminate the procedure q to get a more

elegant version of Example [Tk

Example 1.2 (SML).
fun p x = (print "hello!"; x);

fun pl x = (let val y = (p x) in y+y end);

fun p2 x = (p x)+(p x);

Because SML is call-by-value, the behaviours of p1 and p2 differ like in the
JAVA case. Minor changes would give us an example in LISP or SCHEME.

The reason for the different behaviours of pl and p2 lies in how often p is
evaluated—once or twice. We can change our examples in such a way that p is

evaluated once and not at all, respectively:

Example 1.3 (JAVA).
int p1(int x) { return q(p(x)); }
int q(int y) { return O; }

int p2(int x) { return 0; %
The SML counterpart is

Example 1.4 (SML).
fun pl x = (let val y = (p x) in O end);
fun p2 x = 0;

2For arguments denoting class instances, JAVA’s evaluation strategy is call by reference, but
that does not concern us here.



With the previous definition of the procedure p, given any argument n, p1
prints "hello!” once and p2 prints "hello!” not at all.

If the evaluation strategy was call-by-name, neither p1l nor p2 would print
"hello!”. Unlike in Example [T, call-by-need now behaves like call-by-name

rather than call-by-value.

1.1.2 Evaluation order

The failures of substitution we have seen so far have to do with the number of
evaluations of a procedure argument. There is also a different aspect that can

cause a failure of substitution. Consider the following SML example:

Example 1.5 (SML).

fun q1 x = (print "1"; x);
fun g2 x = (print "2"; x);
fun pl x = (let val y1 = (q1 x) in
let val y2 = (g2 x) in x*yl+y2 end end);
fun p2 x = (let val y2 = (92 x) in
let val y1 = (gl x) in x*yl+y2 end end);

Given an argument n, both p1 and p2 return the value n? + n, but p1 prints
712”7 whereas p2 prints "21”. The JAVA version of the example requires auxiliary

procedures h1 and h2:

Example 1.6 (JAVA).
int p1(int x) { return hi(ql1(x),x); }
int h1(int y1,int x) { return q(x,y1,92(x)); }

int p2(int x) { return h2(x,q2(x)); }
int h2(int x,int y2) { return q(x,q1(x),y2); }

int q(int x,int yi,int y2) { return x*yl+y2; }
int q1(int %) { print("1"); return x; }
int 92(int x) { print("2"); return x; }

Here the different behaviour of pl and p2 is due to the evaluation order of
the arguments of q. For pl, the argument q1(x) is evaluated before q2(x),
and for p2 it is the other way round. In JAVA and SML, it so happens that

8



pl(x) is equivalent to x*ql(x)+q2(x)—however, this is only so because these
two languages choose to evaluate the arguments of + from left to right.
In the cases of call-by-name and call-by-need, p1 and p2 would behave the

same.

1.1.3 Consequences

Let’s summarise the three examples from the preceding sections, using a succinct
notation which is an idealisation of the SML syntax: For fitting expressions M

and N we may have the observational inequalities

(lety=Miny+y)# M+ M
(lety=Min0)#£0

and

(letyy = My inletyo = My in x * y; + ya)
Z(letys = Myinlet y3 = My inx x y; + y2)

Each of the three inequalities shows that the equation
(letx = Min N) = Nz := M] (let.3)

can be observationally false (as usual, N[y := M| stands for the expression that
results from replacing all free occurrences of y in N by M, avoiding variable
capture). Accepting call-by-value as a reasonable evaluation strategy, we must
forbid the unrestricted use of Equation (let.s).

Here it is important to keep in mind that in this discussion (letx = M in N)
simply means that M is passed as an actual parameter to the a procedure
with body N and formal parameter x. For example, in JAVA the expression
(lety = 42inx + y) would stand for an expression p(x,42), assuming a proce-

dure definition
int p(int x,int y) { return x+y; }

(In particular, (letx = M in N) does not force that the evaluation of M if the
evaluation strategy is call-by-need or call-by-name.) So the meaning of Equation
(let.[3) is defined for almost every programming language, even if the let-construct
is not part of the actual syntax, and independently of the evaluation strategy.
That substituting arbitrary expressions for variables can be unsound has been

known for a long time. In particular, for call-by-value, the (-rule
(Ax.M)N = N[z := M] (B)
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of the lambda-calculus has been changed into the rule (3,) by requiring that N be
a value—that is, an expression which is deemed to be already evaluated [Plo75).
In fact, in the presence of a lambda-operator, our expression (let z = N in M) is
just another way of writing (Ax.M)N. However, we avoid the lambda-operator
in this foundational discussion, because most programming languages don’t have

functions as first-class citizens.

1.2 Empirically correct calculi

1.2.1 The computational lambda-calculus

Eugenio Moggi introduced the computational lambda-calculus (also called ‘Ac-

calculus’), which, according to the abstract of [Mog8§]

provides a correct basis for proving equivalence of programs, indepen-
dent from any specific computational model.

This claim seems empirically true (we shall discuss this some more in Section B4).
The computational lambda-calculus has sequents (I' = M : A) where I is an enwvi-
ronment—that is, a finite, non-repetitive list of typed variables, M is a program
expression whose free variables are contained in I', and A is the type of M. The
term formation rules are presented in Figures [[TJHL3 ~ We can think of the
unusual type T'A as unit — A, of [M] as Az : unit.M (where z is fresh), and of
p(M) as the function application M (). (We shall discuss these monadic operators
some more in Remark B8l) The computational lambda-calculus has two kinds
of judgements: Equations of the form (I' - M = N : A), and judgements of the
form (' M | A) (where (' M : A) and (I' = N : A) are derivable sequents).
A judgement (I' = M | A) states that M is a value (Moggi says ‘M exists’).
Values can be substituted in all judgements for any free variable x of the same

type. The derivation rules of the computational lambda-calculus are presented in
Figure [C4
1.2.2 Linear, affine, relevant, and more

Observational inequalities like

(lety=Miny+y)# M+ M
(lety=Min0)#£0

and observational equalities like
(lety=Miny) =M

10



var 1Ay, .o, Ay E s Ay
Lot 'EM:A z:AFN:B
e
I'+letxr=MinN:B
* I'F(): unit
( ) 'EM:A I'-N:B
T T (M,N): A B
'-M: A x A,
U
F|_M1A1 Fl_MnAn
constant f: Aq,..., A, - B
'+ f(My,...,M,): B

Figure 1.1: First-order fragment of the computational lambda-calculus (with mi-
nor syntactic changes)

) Le:AFM: B
'FX:AM:A—B
'M:A—~B 'EN:A
app

I'MN:B

Figure 1.2: Higher-order fragment of the computational lambda-calculus
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r-mM:A
E[M]:TA

'-M:TA
CEuwpM): A

Figure 1.3: Monadic fragment of the computational lambda-calculus

= is a congruence
'tz | A L'k () | unit Ik (x1,22) | Ay x Ag
'k mi(z) | A r=[M]|TA 't Xx:AM | A— B

TFM|A T,o:AFJ
T+ Jz = M]

where J is a judgement

I'-(letx=Minz)=M:A

'k (let xg = (let xp = My in M) in M) = (let x1 = My in (let o = My in M)) : A
I'E(letxy =x9in M) =Mz :=x2]: A

k- f(My,...,M,) = (letzy =My in ... letx, = Myin f(z1,...,2,)) : A
FFwu(M)=M: A

Fkp(x))=x:TA

I'H()=z: unit

' (M, Ms) = (let x1 = My inlet xo = My in (x1,x2)) : A1 * Ay
I'Em((z1,20)) =+ A;

Ik (m(z),m(z)) =x: Ay % Ay

'k ()\331 : Al.MQ)(aj‘l) = M2 . A2

Xz Ajz(r)=x: A — As

Figure 1.4: Derivation rules of the computational lambda-calculus
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show that whether we can substitute expressions for a variable y depends on the
number of free occurrences of y. The expression y + y is relevant in y—that is, y
occurs at least once, but it is not linear in y—that is, y does not occur exactly
once. The expression 0 is affine in y—that is, y occurs at most once—but it too
is not linear. So non-linearity obstructs substitution.

Although the computational lambda-calculus seems to prove the right equa-
tions, it has no explicit account for the number of variable occurrences.

In this thesis, we shall see that, with a certain restriction, if an expression M

is copyable in that
(lety = Min (y,y)) = (M, M) (1.1)
then the equation
(lety=Min N) = N[y := M| (let.3)

holds whenever N is relevant in y. We shall also see that, with the same restric-
tion, Equation (let.3) holds whenever M is discardable in that

(lety =M in()) = () (1.2)

and N is affine in y. The restriction comes from the fact that evaluation order

also matters. For example, we may have the observational inequality

(lety; = My inlet yo = My inx * yy + ya)
Z(letyy = My inlet y; = My inx * y; + ya)

although y; and y, occur linear in = *y; +yo. We shall see that if N is linear in y,
then Equation (let.3) holds if M is central in that for all sequents (IV = M’ : A")
such that I' and I share no variables, it holds that
I T H(lety = M anlety' = M in (y,y'))
=(lety' = M"inlety = Min (y,y")) : Ax A’ (13)
In this thesis, we shall introduce a new calculus for proving program
equivalences—the let-calculus—which is based on counting the number of oc-
currences of free variables and considering an extra property of variables which
is related with centrality. The expressions of the let-calculus agree with the
first-order fragment of the computational lambda-calculus. By contrast, the new
derivation rules for program equalities will enable us to see immediately program
equivalences that would take a long proof in the computational lambda-calculus.
The vocabulary that comes with the let-calculus (‘relevant’, ‘affine’, ‘copyable’,
‘discardable’, ‘central’, and more) seems to be a real help in discussing realistic

programs.

13



1.3 Denotational semantics of procedure calls

1.3.1 Failure of the naive semantics

The first-order fragment of the computational lambda-calculus clearly inspires a
semantics in a category with finite products. Here we shall describe this naive
semantics and show why it fails. The type- and term-formation rules dictate how

to use the categorical structure: The semantics of types is

[4+ B] = [A] x [B]
[unit] =1

where X is the cartesian product, and 1 is the terminal object. Following common

practice, the semantics of a sequent (zy : Ay,...,2, : A, = M : A) is a morphism
f
Al X X An —+ A

(For convenience, we simply write A; for [A;].) The semantics of first-order
expressions is presented in Figure The failure of this semantics has to do with
the observational falsity of the equations [T, [CZ, and [C3 A routine proof shows
that the left side and the right side of Equation [Ll denote the left-bottom and
the top-right path, respectively, of the following diagram (where 6 : A — A x A
is the diagonal (idy4,id)):

r ['xT
f fxf (1.4)
A—" Axa

In a category with finite products this diagram commutes, so the model identi-
fies expressions that may behave differently. The left side and the right side of
Equation denote the left-bottom and the top-right path, respectively, of the

following diagram

f I (1.5)

1

Again, this always holds in a category with finite products, but may be false for
the program behaviour. As for Equation [[3, let f’ : [V —— A’ be the denotation

14



Rule Syntax Semantics
var
.I'liAl,...,l‘niAn'_.I'i:Ai :A1X><Anl>Az
let
THM:A A
Iz:A+-N:B =I'x A2+ B
Thiletz=MinN:B =T lprya-9.8
0 Tk () : unit —r 1
(_7_)
THM:A —1-1.4
I'N:B =r-2.B
T+ (M,N): A+ B —r 9% AxB
T
THM: A %Ay S N N
F}_WZ(M)AZ :F—f>A1><A2l>AZ
fiA,...,A, — B
THM:A =1 2. 4
Tk f(My,...,My):B =T 229 4o xA,

f

—~ s B

Figure 1.5: Naive semantics of the let-language
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of (I F M’ : A’). A routine proof shows that the two sides of Equation
denote the top-right path and the left-bottom path, respectively, of the following

diagram:

fxr

I x1T’ AxT’

r'x f Ax f' (1.6)

Poar 22X 4o

This diagram too commutes in every category with finite products, so again the
model identifies expressions that may behave differently.

So categories with finite products are too crude for modelling some program-
ming languages (if we assume the straightforward semantics in Figure [CH). In
Chapter B, we shall tackle this problem by introducing a generalisation of cate-
gories with finite products such that Diagrams [[4], [CH, and [CH need no longer

commute.

1.3.2 Monadic semantics

A semantics of the computational lambda-calculus that avoids the problems de-
scribed in the previous section is given by Eugenio Moggi’s ‘computational mod-

els’.

In a realistic case, such a model is based on a category with finite prod-
ucts. By contrast to the naive semantics of the previous section, a sequent

(x1:Aq,...,x,: Ay B M : B) denotes a morphism
A1><-~-><An—f>TB

where the A; are objects of values of type A;, and T'B is the object of computations

of type B. In Moggi’s own words [Mog8§]:

There are many possible choices for T'B corresponding to different
notions of computations, for instance in the category of sets the set
of partial computations (of type B) is the lifting B+ { L} and the set
of non-deterministic computations is the powerset P(B).

Attempting to identify the general properties that the object T'B of computations
must have, Moggi employed structures from category theory called monads. A
monad T = (T,n, 1) in a category C' consists of a functor 7' : C' — C and two

natural transformations
n:ldg — T, p:T? —1T

16



(the unit and multiplication of the monad) which make certain diagrams com-
mute. Moggi’s computational models also require a strength, which is a natural

transformation
tap: AxTB —T(A X B)

that satisfies certain equations. (A monad together with a strength is called a
strong monad.) Moggi’s semantics employs a category C' with finite products,
together with a strong monad 7" in C'. This semantics is often given by induc-
tively assigning to a sequent (I' = M : A) a morphism I' — T'A of C'. However,
we shall now use a neat alternative, which emphasises a conceptually important
point. Because C' is a category with finite products, we can use the first-order
fragment of the computational lambda-calculus to denote morphisms of C ac-
cording to the naive semantics in Figure [[3 We describe the ‘real” semantics of
the computational lambda-calculus by a language transform—the monadic-style
transform (MS transform)—that sends each sequent (I' = M : A) to a sequent
(T' = M* : TA) which is to be interpreted in C. It is important to see that, despite
having the same syntax, the transform’s source language and target language dif-
fer conceptually in the same way as the source language and the target language of
a real-life compiler. The categorical semantics of the source language is given by
the transform (—)*, followed by the categorical semantics of the target-language
in C.

Because the semantics uses the strong monad T in C, the target language

needs extra syntax. A nice way to add this is the bind-construct:

| Rule | Syntax Semantics |
bind
I'HM:TA —r-L.74
I,z:A+N:TB =T'xA-2-TB
Tt binde < MinN:TB =T 0114 w70 x A)
. TTB . TR

Intuitively, if M is an expression of type T'A and x is a variable of type A, then
(bind x <= M in N) forces the evaluation of M and binds the resulting value, if
any, to x. The unit 7 of the monad ‘wraps up’ a value as a computationH.

The transform (—)* for the first-order expressions of the computational

lambda-calculus is presented in Figure

30riginally, Moggi used the word ‘let’ instead of ‘bind’, so ‘let’ appeared in two different
term formation rules. We use ‘bind’ to rule out any confusion.
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at = n(x)
¥ = (bindx <= M*in N*¥)
) = 10
(M,N)* = (bz’ndxcMMnbz’ndy@NWnn(x,y))
¥ = (bindx<:]\4ti z’nn(m(x)))
)

(f(My,...,M,))F = (bz’ndxchfz'n...bz’ndxn@Mfzz’nf(xl,...,xnw

Figure 1.6: Monadic-style (MS) transform

Languages Categories

direct-style Computational .Y
lambda-calculus .

MS
trans
form

Y

\

Language with Ac-models

monadic-style
¥ bind

Figure 1.7: The missing direct models, marked by X

1.3.3 The missing direct semantics

The nalve semantics in Figure assigns to a sequent (ry : Ay, ...z, : A, F
M : B) a morphism A; X --- x A, —— B, but it validates too many equations.
By contrast, Moggi’s finer-grained semantics assigns to the sequent a morphism
Ay x -+ x A, — T'B, at the cost of employing a language transform (whether
made explicit or not). Conceptually, Moggi’s computational model provides the
semantics of the target language of that transform. We do not seem to have a
sufficiently fine-grained direct semantics of the computational lambda-calculus.
The situation is depicted in Figure [l The diagonal of Diagram [[1 is the
denotational semantics of the computational lambda-calculus which is usually

presented. The bottom horizontal arrow is the direct semantics of the language
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with the bind-construct. What is missing is a class of categorical models X
that provides a direct semantics (depicted by the dashed horizontal arrow) of
the computational lambda-calculus—that is, a semantics that sends a sequent
(r1 : Ay,... 2y - Ay B M @ B) to a morphism A; x --- x A, —— B. If we
had such a semantics, there should be a semantic counterpart (depicted by the
vertical dashed arrow) of the monadic-style transform.

In this thesis we shall introduce the missing class X of direct models. We
shall find X by generalising categories with finite products in such a way that
the problematic equations [[4 [CH, and [CH need no longer hold. We shall call the
new class of models precartesian categories. A crucial point is that precartesian
categories, while validating the same program equivalences as Moggi’s semantics,
are conceptually simpler and open remarkable new ways of discussing realistic
computer programs. At the core of our analysis will stand notions like copyability,

discardability, and centrality, which correspond to the program equivalences [T],

[CZ, and 3

1.4 Related work

Premonoidal categories and Freyd categories Vital for this thesis was
the discovery of premonoidal categories by John Power and Edmund Robin-
son [PRI7]. Premonoidal categories are a generalisation of monoidal categories
in that the tensor need not be functorial in both arguments jointly. This implies
abandoning the problematic Equation [[8, allowing direct categorical models that
respect inequalities caused by evaluation order. Roughly speaking, precartesian
categories, which we shall define in this thesis, are premonoidal categories with
generalised pairing and projections. So, in some sense, premonoidal categories are
to monoidal categories what precartesian categories are to categories with finite
products.

As computational models, Power and Thielecke introduced Freyd cate-
gories [PT99]. A Freyd category consists of two categories—a premonoidal cate-
gory for modelling all expressions, and a category with finite products for mod-
elling values only. (The definition of Freyd categories is part of Section EZf)
Freyd categories are close relatives of precartesian categories—the main difference
is that a precartesian category is really just one category. Conceptually, using
precartesian categories instead of Freyd categories corresponds to abandoning a

syntactic notion of value (see Section EZ0).
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r-categories The categorical models that we shall introduce in this thesis take
each sequent (I'F M : A) to a morphism I' —— A in some category with extra
structure. There is a second approach, which is based on indexed categories
with extra structure (for an application to type theory, see [Jac91]). The slogan
is that environments I' are indices for the categories in which the expressions
definable in I' are modelled: An expression of type A in an environment I' is
modelled by an element 1 —— A in the fibre of the indexed category over I'. For
modelling call-by-value, Power and Thielecke [PT99] consider a weak version of
indexed category with extra structure, called a k-category, which is implicit in
some earlier work of Masahito Hasegawa [HasO5]. As the main result in [PTT99],
Power and Thielecke proved that there is an equivalence between the category
of k-categories and the category of Freyd categories. Thus the two fundamental
ways of modelling programming languages are closely related. While I consider
indexed models to be important, they do not occur in this thesis, because I did

not want to overload 1it.

Categorical models of continuations My work on this thesis started
with studying Hayo Thielecke’s ®—-categories (‘tensor-not-categories’) [Thi97al,
Thi97h]. With hindsight, these are precartesian categories with extra structure
that model the source language of a call-by-value CPS transform (CPS stands
for ‘continuation-passing style’). I obtained precartesian categories by extracting
from ®—-categories those features that are not specific to continuations. We shall

discuss the CPS transform and precartesian models of continuations in Chapter B

Models of partiality With hindsight, many well-known models of partiality
are special precartesian categories: Concrete examples are categories of sets and
partial functions, pointed cpo’s and strict continuous functions, and so on. These
form precartesian categories such that every morphism is central and copyable (i.e.
Equations [ and [C4 hold). The total maps coincide with the discardable maps
(i.e. those that satisfy Equation [CH). Abstract definitions of such special pre-
cartesian categories have been given again and again: pre-dht-categories [HoeTT],
p-categories [Ros80], copy categories (Cockett), g-monoidal categories [CG99).
According to Robinson and Rosolini [RR8§, Curien and Obtulowicz [COS86| de-
fined ‘precartesian categories’, which are equivalent to Rosolini’s p-categories with
a ‘one-element object’ (i.e. a tensor unit which is terminal in the subcategory of
total maps). I used the name ‘precartesian category’ before I heard of this. Luck-
ily, p-categories with a one-element object are a special case of our precartesian

categories, as we shall see in Chapter B, so my unintended re-definition of pre-
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cartesian categories is benign.
We shall discuss models of partiality as special precartesian categories in Chap-

ter @

Effect systems In the effect-systems literature, the effect of a program is a
description of the program’s non-functional behaviour: ”Just as types describe
what expressions compute, effects describe how expressions compute” [IG9T].

Typically, effect systems have judgements like
'EM :A'E

where I" is an environment, M is an expression, A is the type of M, and E is the
effect of M (e.g. E = pure if M is effect free, or £ = write if M writes to the
store). Like for types, there are rules for effect inference, for example
'EM:A'E I'FN :B!F
' (M,N) :A«*B!EVF

where F'V F stands for the maximal effect that may happen during the evaluation
of (M, N).

The let-calculus, which we shall introduce for deriving program equivalences,
has judgements of the form (I' = M ! E), and inference rules for these judgements
that resemble those of effect systems. However, in the let-calculus, F ranges
over abstract properties like central, copyable, and discardable. These abstract
properties are meaningful for almost every programming language. For concrete
languages, the abstract properties have concrete meanings: For example, in a
language whose only non-functional behaviour is accessing a global store, an ex-
pression is central if it neither reads nor writes, and discardable if it does not
write. (We shall discuss this in Chapter B).

A deep study of the connection between the let-calculus and effect systems

from the literature still lies in the future.

Linear, affine, and relevant logic As described in Section [LZ2 consider-
ing numbers of free occurrences of variables can help reasoning about programs.
In the let-calculus, the properties affine and relevant form two dimensions of a
three-dimensional reasoning principle that I call the precartesian cube. There-
fore, the let-calculus is related with affine, relevant, and linear logic. However,
the third dimension of the precartesian cube, which deals with evaluation order,

goes beyond that.
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Graphs as abstract syntax Sometimes people use graphs or diagrams as an
abstract syntax of programs. For example, a sequent (x1 : Ay, ..., 2, : A, b M :

By % -+ % B,,) may be represented by a diagram

A1—> > Bl

A — B,

Graphs work very well as an abstract syntax for denoting morphisms of
precartesian categories, and are thus an interesting alternative to the let-
calculus. Using graphs in this way has been studied by Alan Jeffrey and Ralf
Schweimeier [S.J99, [Tef98]. (The categorical models they consider are close rela-
tives of precartesian categories, together with a ‘trace’ for modelling recursion.)
A key feature of their graphs is an extra ‘thread’ that determines the evalua-
tion order (‘control flow’). For example, for sequents (r : A = M : B) and
(x: AF N : C), the sequent

x:AFlety=Minletz= Nin(y,z): BxC

corresponds to the diagram

A B

where the thin arrows indicate the data flow and the thick arrows indicate the
control flow.

There is a close connection between isomorphisms of such graphs and program
equivalences. Although graph presentations are very interesting, we shall not
focus on them in this thesis. However, we shall use some diagrams to prove facts
about global state that are otherwise hard to obtain (Chapter [G).

1.5 Overview

A chapter dependency chart is presented in Figure [L8.
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In Chapter B, we shall introduce precartesian categories, which provide the
missing direct semantics described in Section

In Chapter B, we shall develop the let-calculus, and establish it as an internal
language of precartesian categories.

Chapter @l contains a simple example of applying precartesian categories: We
shall construe well-established models of partiality—that is, concrete and ax-
iomatically given categories of partial maps—as precartesian categories. Accord-
ingly, we shall specialise the let-calculus to the p-calculus—a simple calculus which
is sound and complete for the models of partiality under consideration. Thus we
shall understand the non-termination of programs as a particularly simple com-
putational effect.

In Chapter B, we shall see how precartesian categories (with extra structure)
arise as the Kleisli categories of Moggi’s monadic models, in such a way that our
direct semantics validates the same program equivalences as Moggi’s semantics.

Chapter Bl describes an application of precartesian categories which is more
advanced than the study of partiality in Chapter B We shall discuss in great
detail a way of adding global state to an existing computational system. Math-
ematically, this corresponds to constructing a new precartesian category from
a given one. We shall also describe a language transform that describes this
construction. The focus of Chapter [l is on a mathematical analysis of the new
system with global state. This analysis yields insights that seem hard to obtain
without using precartesian categories. The main development in Chapter Bl does
not involve monads. However, we shall briefly compare our approach with the
well-known approach that uses ‘side-effects monads’, so a small part of Chapter
relies on Chapter Bl

In Chapter [ we shall prove that Moggi’s computational lambda-calculus is
sound and complete with respect to the precartesian categories with extra struc-
ture introduced in Chapter We shall also compare the let-calculus with the
computational lambda-calculus and suggest a combination of the two.

Chapter B describes another advanced application of precartesian categories:
We shall analyse an implementation technique called continuation-passing-style
transform (CPS transform). Roughly speaking, this transform takes the expres-
sions of a typical programming language to expressions of a simpler language that

does not require a call stackH. We shall analyse the CPS transform denotationally

4This is a very pragmatic and computational description. Continuations have been exten-
sively studied in the literature, with various goals and methods that range from logics to real-life
compilers. For example, the compiler of Standard ML of New Jersey used to be based on a
CPS transform [App92].
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by construing the source language as a precartesian category and using a method
similar to the one that we use for global state in Chapter @ That analysis is

based on the pioneering work of Hayo Thielecke [Thi97al.
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25




Chapter 2

Precartesian categories

Informally, a precartesian category K is a category together with a tensor ®
which is a generalised cartesian product, and a tensor unit I which is a generalised
terminal object. In particular, K has morphisms § : A — AQA, 14 : A— 1,
p:A® B —— A, and ¢ : A® B —— B which are generalisations of the evident
maps of a category with finite products. The generalisation is such that the tensor
need no longer be functorial in both arguments jointly, but only in each argument,
and that ¢, !, p, and ¢ need no longer be natural. This generalisation solves
the problems related with the evaluation order and the number of evaluations

described in the introduction.

2.1 Preliminary definitions

Although precartesian categories are fundamentally simple, their definition is not.
In fact, there are several possible definitions that we shall prove to be equivalent
(Proposition EZT]). The definition that we choose uses two auxiliary structures.
The first definition is taken from [PR97]:

Definition 2.1. A binoidal category is a category K together with
e For each object A, a functor A® (=) : K — K
e For each object B, a functor (—)® B: K — K
such that for all objects A and B
(A® (=)(B) = ((-) ® B)(4)

For the joint value, we write A ® B, or short AB.
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Definition 2.2. A pseudocartesian category is a binoidal category together with
an object I and transformationslzl 0n: A——A®A, pap: A® B—— A,
gap:A®B— Byand I, : A: A— I.

For morphisms f : A —— A’ and g : B —— B’ of a pseudocartesian category,
let

[®g=at [®B;A®yg and (f,9) =aet 0; f® g

We call the transformation (p; p, (p;q,q)) : (AB)C — A(BC) the associativity
map, {q,p) : AB — BA the twist map, andp : AQ] — Aandq: IRA— A

the neutrality maps.

Example 2.1. The category Rel of sets and relations. The tensor on objects is
the cartesian product of sets, I is the one-element set, and (letting A be a set, R

a relation, and * the unique element of I)

(z,y)(R® A)(,y) & aRa' Ay =/
(z,y)(A® R)(«",y
o (y,2) r=y==z

e r=1 ANyRy

z!* & true
(r,y)pzer=2

(r,y)gz & y==2

Example 2.2. A monoid M, construed as a one-object category. The tensor unit
I is the only object, I ® (—) and (—) ® I are equal to the identity functor, and

01, pr.1, qr,r and !; are equal to the neutral element.

2.2 Central, discardable, and copyable mor-
phisms

Recall Diagrams [LAHLH from the introduction. As we have seen, the validity
of these diagrams is why categories with finite products may validate too many
program equivalences. In a pseudocartesian category, these diagrams need no
longer commute. Therefore it makes sense to define the classes of morphisms for
which these diagrams do commute. These definitions are crucial for the rest of
this thesis.

!By a transformation from a functor F : K — K’ to a functor G : K — K’, I mean a
map that sends each object A of K to an arrow FA — GA
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Definition 2.3. A morphism f : A —— A’ of a binoidal category K is called

central if for each g : B —— B’

B B

AB / A'B BA / BA
Ag Alg gA gA’
ap 1B 4 pa B, gy

The centre ZK of K is defined as the subcategory determined by all objects and

the central morphisms.

Example 2.3. In a monoid M construed as a one-object pseudocartesian cate-
gory, an element a € M is central if and only if for all b € M it holds that ab = ba.

So centrality coincides with the established notion of centrality from algebra.
Example 2.4. In Rel, all morphisms are central.

Definition 2.4. A morphism f: A —— B in a pseudocartesian category K is
called discardable if

A I

f I
!

B I

The category K, is defined as the subcategory of K whose objects are those of

K, and whose morphisms are the discardable morphisms of K.

Example 2.5. In a monoid construed as a one-object pseudocartesian category,

only the identity morphism is discardable.

Example 2.6. In Rel, R : A —— B is discardable if and only if R is a total—that

is, it relates every x € A with at least one element of B.

Definition 2.5. A morphism f : A —— B of a pseudocartesian category K is

called copyable if the following two diagrams commute:

A2 . aa A—2 a4
Af fA

f AB f BA
B Bf

BE—° . pp B2 . pp
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K is defined as the class of copyable morphisms of K.
Example 2.7. In Rel, the copyable morphisms are the partial functions.

Example 2.8. In a monoid construed as a one-object pseudocartesian category,
the copyable morphisms are the idempotents. In particular, the copyable mor-
phisms do not generally form a category. To see this, let M be the monoid of
endofunctions on the set {0, 1,2}, and define f,g € M by

Mt 9y
0— 0 0
1 I— 1
2 -2 -2

Clearly, f and g are idempotent, but f; g is not.

Definition 2.6. A morphism of a pseudocartesian category is called focal if it is

central, copyable, and discardable.
Example 2.9. In Rel, the focal morphisms are the total functions.

I have the notion of focal morphisms from Peter Selinger, who uses it for
models of control [Sel00]. The focal morphisms form a category. To see this, it
suffices to check that the composition of focal morphisms is copyable. This is so

because for focal morphisms f: A—— B and g : B—— C we have
f:9;0=[f;0;,B®g;g®C (because g is copyable)
=5AQf; f®B;B®g;g® C (because f is copyable)
=3 AR ;AR g fRC;g®C (because f and g are central)
=0;AR(f;9);(f;9)®C (because A® (—) and (—) ® C are functors )

We call the category of focal morphisms the focus. With a similar calculation as

above we get the following lemma, which we shall need later:

Lemma 2.1. If in a precartesian category we have n copyable morphisms

AO fl Al f2 L. f'n An

such that all or all but one of the f; are central, then fi;...; f, is copyable.
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2.3 The main definition

In this section, we shall define precartesian categories and prove an important

proposition that provides three alternative definitions.

Definition 2.7. A precartesian category is a pseudocartesian category K such
that ®, I, §, p, ¢, and ! form finite products on the focus, and the associativity
map, twist map, and neutrality maps are natural in each argument with respect

to arbitrary morphisms of K.

This is a very compact definition, so let’s spell it out: That ®, I, 4, p, ¢,
and ! form finite products on the focus implies in particular that the focus is
closed under ®, and that d, p, ¢, and ! are focal. ‘Natural in each argument with
respect to arbitrary morphisms’ means the following: For example, letting as g ¢ :
(AB)C —— A(BC) be the associativity map it must hold for all morphisms
fiA— A g: B—— B h:C—— C'"of K (not only for focal morphisms)
that

(AB)C %+ A(BC)
(fB)C f(BC)
(A'B)C — A'(BC)
(AB)C -2+ A(BC)
(Ag)C A(g0)

(AB)C — A(B'C)

(AB)C -2+ A(BO)
(AB)h A(Bh)
(AB)C’ — A(BC")
This does not follow from the finite products on the focus, which imply only the

naturality of o with respect to focal morphisms. Similar remarks apply to the

twist map and the neutrality maps.
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Remark 2.1. If f is morphism of a precartesian category, then
fi0=20;idf; fid if and only if fi0=0; fid;idf

(So, to see that f is copyable, it suffices to check one of the two equations.) To
see this, let 7 be the twist map, and suppose that f;0 = 9;idf; fid. Then

fi0=f;0,7=0;idf; fid;T = 6;udf;1idf = 0;7; fid;idf = 0; fid; id f

The converse follows symmetrically. However, there exist precartesian categories

where
0sidf; fid # 6; fid; idf

—for example, the Kleisli category of a continuations monad, which we shall
study in Chapter

The following proposition provides four equivalent descriptions of precartesian
categories. Condition [M corresponds to our definition of a precartesian category.
Condition B will be our most-used way of checking that we have a precartesian
category. The point of Condition B is that it shows (after some contemplation)

that all we need to define precartesian categories are equations which are univer-

sally quantified over objects and morphisms.

Proposition 2.1. Let K be a pseudocartesian category such that the associativity
map, twist map, and neutrality maps are natural in each argument with respect

to arbitrary morphisms of K. Then the following are equivalent:

1. ®, 1,0, p, q, and! form finite products on the focus.

2. The central maps, the discardable maps, and the copyable maps, respectively,

are closed under ®, all components of §, p, q, and ! are focal, and

0;p®q=1d
0;p=1id
0;q =id
Iy =idg

pas = AR par
gaB ='® B;q1B

3. All components of 0, p, q, and ! are focal, the equations from Con-
dition [@ hold, the twist map is self-inverse, and the associativity maps
(AB)C —— A(BC) and A(BC) —— (AB)C are copyable and inverse

to each other.
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4. ®, 1,9, p,q, and! form finite products on some subcategory of the centre.
For the proof, which is quite technical, see Appendix [C

Lemma 2.2. In any precartesian category, the projections are natural in the non-

discarded argument—that is for all morphisms f (not only focal f) it holds that
f@idip=p;f andid® f;q=q; [

Proof. For any object B and morphism f : A —— A’, we have fB;pap =
[BiAipa = Al fIipas=Alipar f=pap: f O

2.4 A revised semantics of the let-language

Next we shall adapt the semantics of the let-language (i.e. the first-order frag-
ment of the computational lambda-calculus), which we presented in Figure [3,
to precartesian categories. Let I' stand for ' ® - - - ® I', where I" occurs n times,
and let A stand for the evident n-fold diagonal I' — I'". (It is harmless to omit
brackets in the n-ary tensor product, because the associativity map is a focal,
and in the focus, which is a category with finite products, the associativity and
neutrality maps satisfy the usual coherence laws known from monoidal categories
(see [Lani]).) The revised semantics is presented in Figure Il In the case
where the precartesian category is a category with finite products, this semantics
agrees with the one in Figure [[A The only change consists in clarifying the rules
for pairs and constants with respect to the evaluation order, which is chosen to
be from left to right.

2.5 Strong precartesian functors

When two languages are modelled by precartesian categories, we may want to
compare the models. Obviously, this requires some notion of morphism between
precartesian categories. For this purpose, we shall define strong precartesian
functors. The hurried reader may want to skip this section and return to it on a
call-by-need basis.

Naively, we could define a morphism K —— K’ between precartesian cate-
gories as a functor that preserves all precartesian structure on the nose (i.e. the
tensor an tensor unit, the diagonal, discard map, and the projections). However,
‘on the nose’ can be too strict, and we have to use ‘up to isomorphism’ instead.

This leads to the definition of a strong precartesian functor:
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Rule Syntax Semantics
var
.TliAl,...,ZEnIAn'_.Z'Z'IAZ’ :AlAnl’Al
let
THM:A .
Iz:AFN:B —r4-2.B
Thlete=MinN:B =T —-1TLr4_2.8
0 |
I'E () : unit =TI —1
(_7_)
THM:A —r—t. 4
'+-N:B =T-2.B
TH(M,N): A% B 2.0 oAr Y. A
T
TFM:A A, 1. A4
fZAl,...,An
T f(M,...,M):B =T -2.1»
girm! A1 AygaT" 2

A1-An_19n
R L P R Ay -

Figure 2.1: Semantics of the let-language in a precartesian category
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FA = FA
5 Fo (2.1)

(FA)® (FA) 12 P(a 4)

FA = FA
L Fl (2.2)
F
I 0 L FrI

/

rAoFB LY . FaA

&>

q N Fp (2.3)
F

FB 1 p(AB)

Figure 2.2: Conditions stating that precartesian functors preserve structure up
to Fy and Iy

Definition 2.8. A strong precartesian functor F : K —— K’ between precarte-

sian categories consists of a functor F' : K —— K’, a natural isomorphism
F,(A,B): (FA)® (FB) = F(A® B)
(natural separately in A and B), and an isomorphism
Fo:I'2FI
such that for all objects A, B, and C of K, the diagrams in Figures and
commute. A strong precartesian functor is called strict if Fy and F, are identities.
For strong precartesian functors F : K —— K’ and G : K/ —— K", let

(GF)2(A, B) =qut (GFA ® GFB % G(FAe FB) 5 Gr(A® B)) (2.8)

(GF)o =det (I" o, qr £ GFI) (2.9)

With this composition, strong precartesian functors and precartesian categories
form a category.

Remark 2.2. As we shall see in Remarks 224l and 23], there are potential improve-

ments to our definition of a strong precartesian functor (thanks to John Power for

34



/

(FA® FB)® FC ~ FA® (FB® FC)

F,® FC FA® F,
F(A® B)® FC FA® F(B® () (2.4)
F2 F2

F((A® B)©C) -+ F(A® (B ()

/ /

FBel - . FB I9FB-L . FB
FB® Fy Fp Fy® FB Fq (2.7)
2 Fy
FB® FI -2 F(Ba ) FI® FB -2 F(I® B)

Figure 2.3: Coherence conditions for strong precartesian functors

drawing my attention to this). However, all these improvements lead to special
cases of Definition EZ8 so we are playing safe in that everything that we prove
about the strong precartesian functors in the sense of Definition certainly

holds for functors in the sense of the improved definitions.

The precartesian properties (i.e. centrality, copyability, and discardability)
will be our major interest. So it is important that strong precartesian functors
‘behave well” with respect to these properties. In particular, strong precartesian
functors should preserve and reflect these properties to the same extent as strict
precartesian functors. Remarkably, this is so although F, and Fy may be not

focal:
Proposition 2.2. Let F': K —— K’ be a strong precartesian functor. Then

o [ preserves copyable morphisms and discardable morphisms.

o If F is full and for each object C of K’ there is a central iso C = F'B for

some object B of K, then F preserves central morphisms.

o [f F is faithful, then it reflects central morphisms, copyable morphisms, and

discardable morphisms.

Proof. First, let F' be full, and for each object C' of K’ let there be a central iso

C = F'B for some object B of K. To see that F' preserves central morphisms, let
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f e K(A, A") be central, let g € K'(B, B’), and consider

Ff® FB
FA® FB /@ FA'® FB

©d
>
2

FA® Fg| F(A®g) F(A®g) |[FA®Fyg

FU@BQF

F(A® B (A'® B')

< &

Ff®FB

FAQ FB' - FA'® FB’

The inner square commutes because f is central in K. The outer square commutes
because the iso F; is natural. Now let h € K'(C,C"), let B, B’ be such that there
are central isos j: C = FB and j' : C" = FB’, and let Fg = j7';h; 5. Consider

FfecC

FA®C FA®C
Ff® FB
FA® FB Je FA'® FB
FA®h| FA® Fg FA®Fqg |FA ®h
Ffe FB
FA® FB /& FA' @ FB'
FA®C'
® Ffeocd

The left and right squares commute because FA®(—) and FFA'®(—) are functors.
The top and bottom squares commute because j and j’ are central. Therefore
the whole diagram commutes, so F'f is central.

Proving that a strong precartesian functor F' preserves copyable and discard-
able morphisms is easy. Now suppose that F'is faithful. Let f € K(A, A") such
that F'f is central in K’. To see that f is central in K, let ¢ € K(B, B’) and
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consider

F(f® B)

F(A® B) F(A'® B)

& Ay

Ff®FB

FA® FB FA'® FB

F(A®g)| FA® Fyg FA®Fg |F(A ®g)

FA® FB Frerl

S 2

F(f® B

FA @ FB'

F(A® B - F(A'® B')
The diagram commutes because F'f is central and F5 is natural. Because F' is
faithful, we can cancel F' from the outer square. The resulting square commutes
for all g, which is saying that f is central. Proving that F' reflects copyable

morphisms and discardable morphisms is straightforward. O

Remark 2.3. There are examples of strict precartesian functors that are rele-
vant for computer science and do not preserve central morphisms (see Proposi-
tion G.TTI).

Remark 2.4. Tt is natural to ask whether we should require F, and Fy to be
focal. One can prove that if they are focal, the conditions in Figure imply
the coherence conditions in Figure 23, and not having to check those coherence
conditions would certainly be nice. Alas, the focality of F; can cause a problem
with Definition If G does not preserve central morphisms (and there are
realistic G that don’t), the components of (GF'), may be not central. To solve

this problem, we could follow the following recipe:

e Instead of precartesian categories, consider pairs (K, S) where K is a pre-
cartesian category and S is a subcategory of the focus of K that has all
objects of K.

e Change Definition in such a way that a strong precartesian functor F :
(K,S) — (K',S") must send morphisms of S to S’, and all components
of Iy and Fy must be in 5’.

(The idea of introducing a subcategory S like above is essentially due to John
Power, who equipped premonoidal categories with a subcategory of the cen-
tre [Pow99b].) This solves the problem with Definition EE8 For any K, there
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is a greatest S—the focus—and a least S—the discrete category determined by
all objects of K. It is a future challenge to find criteria for choosing a suitable S
in the case where K models a programming language. A good choice of S should
be a category of (syntactic) ‘values’ (e.g. freely generated by constants, pairing,

the lambda-operator, and so on).

Corollary 2.3. Strong precartesian functors that are isomorphisms of categories
preserve and reflect central morphisms, copyable morphisms, and discardable mor-

phisms.

Remark 2.5. We cannot simply replace ‘isomorphism of categories’ by ‘equivalence
of categories’ in Corollary 223 To see this, let F': K — K ' and G : K/ —— K
be precartesian functors that form an equivalence of categories. To conclude that
F' preserves central morphisms, we would need the extra condition that every
component of the natural isomorphism Idy = FG is central. However, there is
a way out of this dilemma if we follow the recipe in Remark 24k In that case,
we could require natural transformations F —— G : (K,S) —— (K',5") to
have components in S’. With such natural transformations as 2-cells, we would
get a 2-category with 0O-cells (K, S) such that equivalences (K,S) ~ (K',S’) in
that 2-category preserve centrality. However, we shall not use this 2-categorical

approach in this thesis.

2.6 About the origin of precartesian categories

This section is a brief review of the literature that inspired my definition of
precartesian categories. In a technical sense, the remainder of this thesis does not
depend on the contents of this section.

As explained in Section [CLT2 it matters in which order the arguments of
a procedure are evaluated. Earlier in this chapter, we tackled this problem by
removing the condition that the tensor of a categorical model has to be functorial
in both arguments jointly. To my knowledge, this generalisation was first made
when John Power and Stuart Anderson introduced premonoidal categories in
the early 90’s, for modelling finite non-determinism [AP97]. Roughly speaking,
symmetric premonoidal categories are generalised symmetric monoidal categories
in that the tensor need not be a functorial in both arguments jointly, but only in

each argument. Here is a precise definition, taken from [PRI7]:
Definition 2.9. A symmetric premonoidal category is

e A binoidal category C'
38



e An object I of C

e Four natural isomorphisms A(BC) = (AB)C, A = A, Al = A, and
AB = BA, with central components that satisfy the coherence conditions

known from symmetric monoidal categories.

Symmetric monoidal categories are exactly those symmetric premonoidal cat-
egories that have only central morphisms. Obviously, every precartesian category
forms a symmetric premonoidal category, where the structural isomorphisms are
those of the focus construed as a category with finite products.

Along with symmetric premonoidal categories came symmetric premonoidal

functors:

Definition 2.10. A strict symmetric premonoidal functor F between symmetric
premonoidal categories K and K’ is a functor that preserves the tensor, the tensor
unit, and the structural isomorphisms on the nose, and sends central morphisms

to central morphisms.

Obviously, every strict precartesian functor that preserves central morphisms
is a strict symmetric premonoidal functor. (As explained in Section EZH, to cover
certain realistic examples in computer science, we had to remove the condition
that functors preserve central morphisms.)

In the Power’s framework, copying and discarding come into play in the guise
of Freyd categories [PT99]:

Definition 2.11. A Freyd category consists of a category C' with finite products,
a symmetric premonoidal category K with the same objects as C, and an identity-

on-objects strict symmetric premonoidal functor F': C —— K.

Obviously, every precartesian category K forms a Freyd category, where C
is the focus of K, and F' is the inclusion functor. There is also an opposite

construction:

Proposition 2.4. Let F: C —— K be a Freyd category, where J is the diagonal
of C, p and q are the projections of C, and ! is the discard map of C. Then
(K, Fo,Fp, Fq, F!) is a precartesian category. Moreover, all morphisms in the

image of F are focal.

Typically, when a Freyd category F' : ' —— K is used for modelling a
programming language, K is a category for modelling all expressions, C' is a
category for modelling syntactically-defined ‘values’ only, and F' is faithful. While
all morphisms in the image of F' are focal, there may be more focal morphisms—

that is, there may be focal morphisms that do not denote syntactic values.

39



Chapter 3

The let-calculus

In this chapter we shall develop the let-calculus—a calculus for reasoning about
program equivalences. Its design is inspired by the notions central, copyable, and

discardable, which are associated with precartesian categories. Its judgements

have form
'FkM=N:A
'EM!'E where E € {central, copyable, discardable, focal, . ..}
'EM/ex where e € {linear, relevant, affine, arbitrary, ...}

where (' M : A) and (I' = N : A) are sequents of the let-language. (Filling in
the dots is part of this section.)

3.1 Exploiting categorical closure properties

The key observation that starts our development is stated by the following propo-
sition:
Proposition 3.1. In a precartesian category,

e The central morphisms are closed under all operations (i.e. they form a

subcategory which is closed under tensor and contains all components of 9,

p, q, and!).

o The discardable morphisms are closed under all operations.

e The copyable morphisms are closed under all operations except the compo-

sition of the category.

Proof. 1t is obvious that the central morphisms and the discardable morphisms,

respectively, form a subcategory. By the definition of a precartesian category, 4,
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p, ¢, and ! are focal and therefore central, copyable, and discardable. By Condi-
tion B of Proposition 111, the central morphisms, the copyable morphisms, and the
discardable morphisms, respectively, are closed under tensor. Clearly, identities
are copyable. That the copyable morphisms are not closed under composition we
know from Example O

The key observation now is the following: Because in every precartesian cat-
egory the central, copyable, and discardable morphisms, respectively, are closed

under all operations (almost all in the case of copyable morphisms), the sequents
(' = M : A) for which (I' = M ! E') holds are closed under all (almost all) sequent

formation rules.

Example 3.1. Suppose that we have
(' M ! central) and (I'+ N ! central)

and let central morphisms f: ' —— A and g : ' —— B be the denotations of
(' M : A) and (I' = N : B), respectively. The denotation of (I' = (M, N) : A x
B) is §; fid;idg. This is central because the centre is closed under all operations,

and therefore we should be able to derive
I'F (M, N)! central

The only catch is that the copyable morphisms are not closed under compo-

sition, but we shall find a way to deal with that problem.

3.2 The precartesian cube

It is helpful to arrange the properties central, copyable, discardable, and all their
intersections, in a three-dimensional boolean lattice as in Figure BIl—let’s call
it the precartesian cube. Let V and A stand for the least upper bound and the
greatest lower bound, respectively, in the precartesian