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ABSTRACT. It is well-known that weakening and contraction caustv@a&ategorical models of the
classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the
well-known categorical semantics of linear classical sequent proofs, we give models of weakening and
contraction that do not collapse. Cut-reduction is interpreted by a partial order between morphisms. Our
models make no commitment to any translation of classical logic into intuitionistic logic and distinguish
non-deterministic choices of cut-elimination. We show soundness and completeness via initial models
built from proof nets, and describe models built from sets and relations.

1. INTRODUCTION

While the proof theory of propositional intuitionistic logic with disjunction, conjunction, and im-
plication obtains a clean interpretation in bi-cartesian closed categories, it is well-known that adding
the interpretation of a dualizing negation, to interpret the proof theory of propositional classical logic,
makes the categories collapse to Boolean algebras [15, 14].

Classical natural deduction [19] may be represented as terms afithealculus([17, 20]. Models
of Auv can be obtained in fibrations over a base category of structural maps in which each fibre is
a model of intuitionistic natural deduction and in which dualizing negation is interpreted as certain
maps between the fibres [16./20]. (Alternative models are given by control categories and co-control
categories[[22].) Whilst these solutions provides non-trivial categorical models, with computation-
ally significant examples, it relies on a choice-of-translations of classical logic into intuitionistic
logic [24,[18]. Such a choice imposes a restriction on the equational theory of proofs which is most
readily apparent when one considers cut-elimination in the classical sequent célculus [9]. To see
this, consider the following example, due to Lafant|[25, 12], in which the cut-redex has two possible
reducts:

L P - Py
A
WR  —— WL <1> r
HAB BFA < .1 or . P2
Cut FA FA
A A
FA

The loss of the symmetry of the sequent calculus forcedbys choice of fibred model, admits only
the reduction toP,. In functional programming jargon;—-translations are called “continuation-
passing-style” (CPS) transfornis [18], and the transform chosen above validates equalities (between
Apv terms) typical for call-by-name. A call-by-value CPS transform would admit only the reduction
to ®,. If the denotations oft; and®, are made equal, then the collapse of the categorical model
follows.
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Thus we seek a semantics of the classical sequent calculus which is both nonitayialof a
Boolean algebra), and symmetric in the sense that there is no enforced commitment to a particular
strategy of cut-elimination. To escape from the collapse, we shall weaken the assumption that the
redex and the reduct of a cut-reduction must have the same denotation: we shall only require that the
two be related by partial orderrelation. Thus, we shall introduce a class of order-enriched categories
to model the classical sequent calculus which are

(1) non-trivial in the sense that there are hom-spaces with more than one denotable element,
(2) sound in the sense thalt cut-reductions are admitted by the partial order,
(3) complete in the same order-theoretic sense.

One challenge turns out to be the categorical interpretation of the structural rules.iideparoach
would be to use finite products (resp. coproducts) to interpret left (resp. right) weakening and contrac-
tion. But this would result in admitting both reductions in Lafont's example (in the sense that redex
and reduct are equal), and so the models would collapse.

By contrast, it is known that there are non-trivial models of lihear fragment of the classical
sequent calculus. To address the problems caused by the structural rules, we shall

(1) start with models of the linear fragment of the classical sequent calculus,

(2) endow every objectl with a monoid(V : A® A —— A,[] : 0 —— A) to model right
contraction and weakening, and a co-monald: A —— A ® A, A —— 1) to model left
contraction and weakening,

(3) add an order-enrichment, and

(4) introduce some delicate conditions about the interaction between the monoids, the co-monoids,
and the partial order.

Our chosen models of the linear fragment Bmearly distributive categorief4] (formerly called
“weakly distributive categories”).

The resulting order-enriched categories will be sound and complete with respect to cut-reduction
in the classical sequent calculus.

It is worth noting that, while our motivation is to present a non-trivial semantics of the classical
sequent calculus, the redex in Lafont's example is actually intuitionistic, and contains neither negation
nor implication. However, Lafont’'s example seems to rely crucially on the possibility of multiple
succedentsi.g., formulee on the right side of the proof gat¢. Thus, the minimal setting for a
semantic study of Lafont's example seems to berthdti-succedent intuitionistic sequent calculus
[6] without implication.We implicitly cover this minimal setting, because our setting differs only in
that we add negatioorthogonally

While sequent proofs are our conceptual starting point, they contain a good deal of extraneous
information, which needlessly complicates the study of their semantics. This is well-known and one
of the reasons why sequent calculi are studiedovief nets Proof nets where introduced by Girard
for studying linear logic([10]. A different kind of proof net was used!inh [2] to build initial linearly
distributive categories. The connection between sequent proofs and proof nets is fairly obvious and
has been repeatedly formulatedsaequentializatiortheorems which state that every proof net can
be turned into a sequent pro6f [10,] 21] (the converse is almost trivial). Therefore, we shall switch
from sequent proofs to proof nets early on in this article. The proof nets we use where introduced by
Robinson|[21] and possess rule nodes for weakening and contraction. They will in fact provide the
initial categorical model from which we derive our completeness result.

1.1. Construction of this article. In §[2, we shall recall the definitions of the classical sequent cal-
culus, Robinson’s proof nets, and linearly distributive categories.
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In §[3, we shall present cut-elimination for proof nets, thereby motivatidgwhere we introduce
a notion ofnet theorywith judgments of the forml/ < N, which roughly mean that nét/ and be
cut-reduced to nel.

In § 5, we explain how linearly distributive categories form a sound and complete semantics of
linear proof nets (via an initial model build from proof nets). This is similar to [2], but there are some
important differences.

In §[6, we shall show how to extend linearly distributive categories with monoids, co-monoids, and
an order enrichment to provide a sound and complete semantics in the presence of weakening and
contraction. The completeness proof will employ an initial model built from proof nets. This model
will be unusually informative compared with typical term models in logics and computer science. The
non-triviality of the semantics will follow from a simple model built from sets and relations.

2. PRELIMINARIES

2.1. Classical Sequent Calculuslt is debatable what a natural-deduction system for classical logic
should be, and none of the proposed systeatg (17]) adheres strictly to the introduction—elimination
format. By contrast, the classical sequent calculus is quite definitive, and has remained remarkably
stable since Gentzen. The main developments have been the investigation of tweaks to do with the
placing of structural rules, and an understanding, inspired by Girard, of the different implications of
choosing additive or multiplicative formulations of the rules. Later in this article, we shall introduce
proof nets as a more economic notation of sequent proofs; one of the lessons there is that the theory is
very smooth for the multiplicative connectives, but more problematic for the additives, which require
“boxes” to indicate subproofs [11]. We therefore adopt a multiplicative presentation of classical logic.
A sequenhas the formi” - A, where both th@erecedent” and thesuccedent\ are finite sequences
of propositional logical formulee as given by the grammar

A B:=AANB|T|AVB|L|-Alb
whereb ranges over atomic formulae. We consider implication to be derived — that is,
A= B :=-AVBEB

The inference rules are presented in Taples 1 and 2. It is helpful for our purposes to consider the left
introduction ruleTL (which is missing in Tablg|1) as a degenerate case of RuleWith A = T,

and dually forl R. When we refer to the classical sequent calculus, we mean the system presented
in Tableq 1 anff]2. When we refer to the linear fragment of the classical sequent calculus, we mean
the system presented in Table 1, plus the degenerate ¢dsesd LR of the rules W. and WR,
respectively.

2.2. Linearly distributive categories. Linearly distributive categories (formerly called “weakly dis-
tributive categories”) where introduced by Seely and Cockettin [4]. They have two binary operations:
a (tensor) “product®, and a “sum™®. The key feature is a natural transformation

§:A®(B®C) — (A®B) & C

called linear distributivity which is precisely what is needed to model Gentzen’s cut rule (in the
absence of other structural rules).

In this article, we shall only usgymmetridinearly distributive categories, which have twist maps
A®B = BAandA® B = B@ A. This corresponds to the fact that the sequent calculus considered
in this paper admits the exchange law.

Next, we turn towards the precise definition of a symmetric linearly distributive category. To help
later reference, we shall present all details, starting with monoidal categories.
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AX
AR A
IA,BFA '-A,A T'FBA
— AL AR
IAABEA I'T'FAAB,A A
'k A B A IAFA T ,BEA
— VR VL
I'-AvVB,A LT, AVBFAA
— TR
FT
— 1L
1
I'HAA AR A
I-AFA I'k-A4A
A B,I'FA I'-A A B,A
——————EL — ER
I'B,AT'FA A, B AN
'FAA T, AFA
Cut

I,T'F A A

TABLE 1. Linear inference rules of the Classical Sequent Calculus.

TFA TFA
— WL — WR
DLAFA T-AA
LA AFA THAAA
CL CR
OLAFA THAA

TABLE 2. Weakening and contraction rules of the Classical Sequent Calculus.
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A monoidal categorys a categonC together with a functog : C x C — C, an objectl, and
natural isomorphisms

ag: (A®B)C =2 A® (B () A 1@ AXA P AR1=A

satisfying the following coherence conditions.

(Ao B)2C)oD 2% (Ao B)e (CoD) 2% Ag (B (C o D))

(1) Oé®®l'd Zd@@@
(A (B®C))®D - » A® (B®C)® D)
®
(A®1)® B A®(1® B)
(2)
pPe @ id id ® Ag
A® B
A
3) 191 =1
P

A symmetric monoidal category a monoidal category with a natural transformation: A @ B =
B ® A such that

A9BZ8 Bw A

) id\* l%

A® B
12 A 7® Aol
(5) \ /
Ag P®
A
O'®®’L'd (073
(C®A)®B (A (C)® B — A® (C® B)
(6) CK@{ ’Ld@U
C®(A® B) (A®B)®C — A® (B®C)
0® 1075

A symmetric linearly distributive categoiig a categoryC together with two symmetric monoidal
structureg®, 1, ag, A\, pe, o) and (@, 0, ag, A\g, po, 0e) and a natural transformatioh: A ®
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(B C) — (A® B) & C satisfying various coherence conditions. Before stating them, we define
natural transformations;, 0%, 5%, ands? as follows:

id ® og, oo ® id

A® (B C) AgCaeB) — 22 . (CaB) oA (BaC)® A
(A B)@C Co(AoB) - Co(BoA) (BoA) @ C
Ogp 10 D oy 0

In our statement of the coherence conditions, we shall use the following three symmetries (taken
from [4]):

op’: Reverse the arrows and swapand®, as well asl and0. This gives the following assign-
ment of maps:

5% — 5% ag aéll ag aéll
51}% = 511% Po = Pg  Pe 7 Py
Oy — 0Ogq Og — 0Og
®’: Reverse the tensaoy; this assigns
5£ — idf Qg aél ag — Qg
L R
0p < Op pPe < Az pe — pPo
A@ g A@
oy aél oy — Og
@': Reverse the tensay; this assigns
o 5 g = ag agn — aél
R R
o < 0 pe — po Pe < As
)\@ — )\@
g H— 0y Op Uél

The coherence laws are as follows, where for each law we also require all versions generated by the
symmetriesp’, @', and®’:

1®(A® B)
7) 6£J w
(1®A)&B A®B
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(A9 B)®(CaD) — 22+ Ao (Bo (Co D))

id @ 6%
(8) sk A®((B<§'©C)69D)
J7
((A®B);®C)@Da®@i (A®(B<8’>C))€BD
(Ao B)® (C® D)
5t %
9) (AeB)e@C)e D Ao (B (Ce D))
SR id id ® 6F
(A® (B®C))® D o ~-A® ((BeC)& D)
A®((BeC)a D) 4 ®og A®(Be(Ca D))
oF ok
(10) (A®(BEéC))@D Bao (A ®'(C@D))
of @ id id & 6F
(B@(A(E;C))@D - B@((AéC)@D)

For further discussion of the structure of symmetric linearly distributive categories,|see [4]. For the
sake of brevity, we shall write “linearly distributive category” instead of “symmetric linearly distribu-
tive category” from here on.

To see how the linear distributivity can be used to model the cut rul¢, iet —— B ¢ C and
g:C® D —— FE be morphisms. Then thaut of f and g with cut objectC' is

. 6R
cut(f,9) = Ao D2 Bao)eD 2t Ba(CoD) 24 Bo E

A linearly distributive category with negatios a linearly distributive category together with, for
every object4, an object4*, and maps

AT A—0 Rl — A A
Together with the induced maps

AR A® A — 0 il A A
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the following coherence conditions are required:

id ® T 5k vE @ id

A®1 AR (A" A) L (A A A 0@ A
(11)
PR Ao
A
d @ Th 57 L'gid
401287, proaea) Xk rresea T8 0gar
(12)
P Ao
A*

For further discussion of the structure of (symmetric) linearly distributive categories with negation,
seel[4].

Remarkl. As we shall see, linearly distributive with negation provide a sound and complete semantics
of the linear fragment of the classical sequent calculus. There is, in fact, an alternative class of models
whose definition does not require a linear distributivity, because it can be derived from universal
property of negation. These alternative models, which the authors introduced -agaudb»nomous
categories”[[3], are based on two families of adjunctions

A®B —» C A—=BaoC
A— B"aC AR B* — C
These enable the derivation of a linear distributivity:

AoB-L.A0B BeC -2+ BaC
(ADB)9A* — B B—— C*® (B C)
(ABB)© A* — C*® (B® C)
(A®B)® A" ®C — B®C
(A®B)®C)® A" —~ B C
(Ao B)©C — A® (BoC)

It can be shown that bi-autonomous categories (whose definition contains quite a few coherence
conditions not mentioned above) are equivalent to linearly distributive categories.

Bi-x-autonomous categories seem quite appealing owing to their clear explanation of negation.
However, linearly distributive categories are ultimately much easier to work with, which is why we
finally adopted them as the basis of our semantics.

2.3. Proof nets. Proof nets were introduced by Girard for the study of linear lagi¢ [10]. They have
been applied to various other logical systems [2, 1]. In this article, they play @keinrthe semantic
analysis of the Classical Sequent Calculus. The proof nets we use are the two-sided sequent-style nets
for classical logic recently introduced by Robinspn|[21].
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Roughly speaking, a proof net is a connected graph built from the figures in Tableq B and 4, sat-
isfying a certain global condition. We begin formalizing this by recalling the following definition
from [21].

Definition 1. A proof structurds a bipartite directional graph whose two families of nodes are labeled
as follows:
Family 1: labeled by one of the sequent proof rules;
Family 2: labeled by a formula, together with the information Left or Right.
The graph is subject to the following additional constraints:
(1) The graph surrounding each rule node is given uniquely as an instance of the corresponding
figure (in Tablg B of 4);
(2) Each propositional node has a unigue incoming and at most one outgoing arc.
There is some ambiguity in the phrase “the graph surrounding each rule node is given uniquely as an
instance of the corresponding figure”. We intend that this mapping is given as part of the structure of
the graph. In most instances, only one such mapping will be possible, but we will wish to distinguish

the two inputs to, say, anR even when they are instances of the same formula.
However, we still have structures which do no represent valid proofs, for example

Ax Ax

vL AR

Y Y
( AvBL ) ( AABR )

These structures are eliminated by using a technique due to Danos and Regnier [5].

Definition 2. A (Danos-Regnier) switching is the choice of one of the hypotheses for each node of
the following forms:[AL], [VR], [CL], [CR]. We shall say that the remaining nodes answitched

The purpose of a switching is to generate a graph.

Definition 3. Let S be a proof structure and a switching on it. Then the (Danos-Regnier) graph of
o, DR(o,S), is the following undirected graph:
e Its vertices are the propositional verticesf
¢ Its edges join conclusions of rule nodes to hypotheses as follows. If the rule node is unswitched,
then each conclusion is joined to each hypothesis. If the rule node is switched, then the con-
clusion is joined only to the hypothesis chosendiy The exceptions are axioms and cut,
where the two formulee are joined.

Definition 4. A proof structureS is aproof netif for each switchings of S the Danos-Regnier graph
of o, DR(0,S), is connected and acyclic (as an undirected graph).

There is a straightforward procedure to turn a sequent proof into a proof net (see [21]). However,
the converse is a substantial theorem.
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AL

Y
AABL ( AABR )
: COC) (o)

Gil

vL vR

Y
AvBR

AvBL

-

L TR

Y
TR

B

-R

-AL -AR

006 68 6

TABLE 3. Proof nets: linear rules




ORDER-ENRICHED CATEGORICAL MODELS OF THE CLASSICAL SEQUENT CALCULUS 11

TABLE 4. Proof nets: structural rules

Theorem 2.1. Every proof net can be generated as the image of a sequent proof.

For the proof nets we introduced above, this theorem has been proved by Robirison [21]. (However,
for different kinds of proof nets, such theorems have been proved before.)

One possible reading of the sequentialization theorem is that a proof structure is a proof net if and
only if it can be built from the figures in Tabl¢$ 3 anfdntluctivelylike a sequent proof. Before
we formalize this, we introduce a more economic notation for nets, which is obtained as follows:
First, adopt the convention that proof structures are drawn in such a way that all of their edges point
downwards. Second, omit the arrowheads, which are now redundant. Third, for figures other than
Ax and QuT, remove the rule nodes and connect the hypotheses directly with the conclusions. For
example, the figures fokL, —L, and_LL are represented by

respectively. The figures forXand QUT are represented by

respectively. Note that by shifting to the new notation we loose no information.




12 CARSTEN FJHRMANN, DAVID PYM

Now for the inductive presentation of proof nets. We let figures like

5H B

range over proof nets; in this exampld, has doorsd : L andB : R (and maybe more), anl has a
door A : R (and maybe more). The inductive definition of proof nets is presented in Tgbledb and 6.
We call a netinear if it contains no rule nodes of the formLC CR, WL, or WR, with the exception
that WL (resp. WR) is allowed if the formula introduced by the weakeningrigresp._L), in which
case we call the rule L (resp.LR).

A propositional node of a net is calledlaor if it has no outgoing arcs. Thengdom(resp.empire
of a propositional nodel is the smallest (resp. largest) subnet witlas a door. It is proved in [21]
that the kingdom and empire of a propositional node always exist.

As mentioned in the introduction, sequent proofs contain extraneous information which is discarded
in proof nets. For example, consider the sequent proof

AF A
T wL
ABF A
T WR
A BFAB
AL
AANBF A B

— VR

ANBFHAVB
There are six variations of this proof with respect to the order in which the inference rules are used: (1)
WL-WR-AL-VR, (2) WL-WR-VR-AL, (3) WL-AL-WR-VR, (4) WR-WL-AR-VL, (5) WR-WL-
VL-AR, (6) WR-AR-WL-VL. The proof net corresponding to this proof, and all of its variations,
is

This illustrates that, by using proof nets, we no longer have to deal with permutations of rules. In
fact, the suppression of permutations is the only information loss in the transition from sequent proofs
to proof nets. (For a precise statement, see Proposition_3lin [21].) However, it greatly simplifies our
presentation.

Remark2. In this article, we shall build linearly distributive categories from linear proof niets (
proof nets without weakening and contraction), as a first step towards our semantics of the classical
sequent calculus. In[2] too, proof nets are used in the construction of linearly distributive categories.
However, there are important differences between the nets in [2] and the ones we use. Our choice of
net is motivated by the study of cut-reduction. To this end, we need explicit cut links! In [2], where
the main purpose is showing categorical coherence, explicit cut links are not present, and not needed.
We shall in fact present, in loving detail, a cut-elimination procedure for nets. In our linearly
distributive category, composition will be defined in terms of the cut rule (not simply juxtaposition,
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TABLE 5. Inductive definition of proof nets: linear rules
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<= <>

CL

TABLE 6. Inductive definition of proof nets: structural rules

as in [2]). The categorical identities will be axioms (not the empty net, as in [2]). A good illustration
of the differences between both kinds of nets is our cut-reduction lawAX in Table[7. It is a
well-known step in cut-elimination, yet in cannot be stated in terms of the nets used in [2] (where it is
trivially valid, though).

Also, the way in which we present the equality of nets differs from thatlin [2]. For example, there is
a striking difference in the axiomatization of the unitsand_L. (In fact, our axiomatization requires
fewer equational laws than the onelin [2]. This is possible because we allow ourselves tonme the
local law W-MoVE.) In particular, ourempire re-wiringresult (Propositiop 3]4), which is essentially
the same as Proposition 3.3 lin [2], is proved in a very different way.

3. CUT-ELIMINATION FOR NETS

Proof nets are our chosen representation of classical proofs, for which we are seeking a sound and
complete semantics. It is therefore essential to have a precise definition of equality between nets. This
equality must be based on cut-reduction, because that is the phenomenon we want to model. We shall
therefore present a cut-elimination procedure for Robinson’s inets [21], to demonstrate that the spirit
of our investigation does not depart from the sequent calculus. Our starting point is Robinson’s dis-
cussion of cut-reduction [21], from which cut-elimination is obtained (essentially) following Gentzen
[9] in the usual way. (Robinson has also worked independently on cut-elimination.)

The cut-reduction rules presented in this section will form the basis of our definitivet tfieories
in§[4.

The rules we use for cut-elimination are presented in TdBlep 7, §,Jand 9. W useV as an
abbreviation for the pair of rule®/ < N andN < M. The capital letters(, Y, andZ range ovel.
and R. We define a notation for switching sidds= R andR = L, which is used in Rules CrAX,

CuTtW, and QTC to avoid having to write two versions of each rule. The Rulesr&, CUTA,
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e
& cuT-
s
® o
s
=
Y
Y

TABLE 7. Local cut-reductions: logical cuts and cuts against an axiom

CuTtv, CuTT, and QT.L are the well-known reductions of “logical cuts”. Ruleg@AX, CUTW,
and QTC are also well known. The importance of the rules in Table 9 will become evident in the
cut-elimination proof.

The presentation of cut-reduction on nets highlights an aspect which is not so evident when sequent
proofs are used: the cut-reduction rules in Table 7l@eal in the sense that only a tiny subgraph of
the net is rewritten. (The same is true for the coherence laws in [able 9.) By contrast, the rules
CutW and QJTC are non-local: the changes may copy or discard arbitrarily large parts of the net.
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CutwW

CutC

TABLE 8. Non-local cut-reductions: cuts against weakening and contraction

Therefore, we call the rules in Taljlg 7 thoeal cut-reductionsand the rules in Tab[g 8 then-local
cut-reductions

(Note that we use= in all rules except in the non-local cut-reductions, However, in the cut-
elimination proof we shall use the rulesu€A, CuTV, CuT—, and QTAX only from left to right.
We shall justify the use of in §[4.)

Lemma 3.1(Coherence of contraction).et M be a net withn + 1 doors of the formd : L. Let M,
and M» be any two nets that result froM by n applications ofCL to the A : L (so finally only one
A : Lis left). ThenM; and M, are equivalent modul@€-AssoG C-CrRoss andC-TwiST. Dually
for doors of the formA : R.

Now follows the Principal Lemma for cut-elimination. The horizontal dots stand for multiple
contractions (whose arrangement does not matter by Lgmrna 3.1).

Lemma 3.2(Principal Lemma) Let L be a net of the form
@x@ oxo
(en) (e

where M and N are cut-free. Therl. can be transformed into a cut-free net by using the rules in

Tableg [ B, anfd]9.
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2P < §

XK

TABLE 9. Coherence laws needed for cut-elimination
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Thus, we essentially usaulticuts as in Gentzen'’s original proof.

Before we can prove the Principal Lemma, we need to prove a creesairing proposition
(Prop[3.4), which states essentially that weakening links can be moved around freely. The re-wiring
proposition is necessary because, in contrast to the sequent calculus, weakenings in nets must be at-
tached to some existing node. Our re-wiring proposition is similar to Proposition 3.3 in [2]. However,
as mentioned in Remafk 2, our axiomatization of the equivalencé nets differs from that in_[2].
Therefore, a new re-wiring proof is in order. First, a lemma:

Lemma 3.3. Whenever one (and therefore both) sides below are nets, one side can be transformed
into the other by using ruleSuUTT (alternatively,Cut_1) andW-MOVE.

Proof. First, we transform the left net into the right one. By applying RulerT backwards to the
kingdom (or empire) of the uppet, we obtain
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By applying Rule W-MbVE to the kingdom ofB, we obtain

By applying Rule W-MbVE to the empire of the lower : L, we obtain

Now the right net in the statement of the lemma results from applying RuleTCforwards to the
empire of the lowerd. All rules we used are reversible, so we can also obtain the left net from the
right one. 0

Proposition 3.4(Empire re-wiring) Weakenings can be moved around freely within the empire of the
formula they introduce, by using rul€uTT (alternatively,CuTt_L) and W-MOVE.

Proof. By using Lemma 313 first forwards and then backwards. O

Our proof of the Principal Lemma relies on notionsrahk of a proof anddegreeof a cut, and
proceeds by induction on the meas(degree, rank), ordered lexicographically.
To define the net-version of the notionraihk, we allow doors to be “marked”. A marked door has

the form

wherex € {0,1}. If z = 1, we call the doomarked otherwiseunmarked Next, we define a
decomposition relatiors> between marked nets in Talple| 10. Intuitively, we have= M’ if M’ is

an immediate subnet @ff. However, the key property ef is the propagation of marks along doors:
marks are propagated along contractions and along one side of weakenings, but not along introduction
rules. Theleft rankranky, (M) of a netM with at least one marked left door is the maximum length

n of a sequencd/ = M, = M, = --- = M, such that allM/; have at least one marked left door.
Theright rankrank g (M) of a netM with at least on marked right door is the maximum lengtbf
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BL/O

TaBLE 10. Decomposition relation for determining left and right rank of marked nets
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a sequencél = M, = M- = --- = M, such that all\/; have at least one marked right door. The
rank of a multicut as required in the Principal Lemma is determined by the following marking:

rankp @ @ + ranky, @ @

Thedegreeof a cut is defined to be the number of logical operators contained in the cut formula.

Proof of the Principal LemmaBy induction over the measuf@egree, rank) of L, ordered lexico-
graphically.

In the case in whichankz (M) = ranky, (V) = 1, we proceed by a induction over the degree of the
cut. In this case, degree is reduced but rank increases, so illustrating the need for the lexicographical
ordering of(degree, rank).

If M or N is an axiom, the cut can be eliminated by Rulet@x. If M, say, ends with a weaken-
ing, then (because of its minimal right rank) it must be of the form

<
()

where( is the only marked door. Therefore, the cut can be eliminated by RutdAC Dually for the

case wheréV ends with a weakening. Owing to their minimal ranks, neithenor N can end with a

contraction. This leaves the case where bttand NV end with the introduction rule of a connective.

For reasons of rank, it must hold for batli and/V that the introduced formula is the only marked

In particular,M andN introduce the same connective. So the cutis a logical cut, and one of the rules

in Tablg 7 applies. That rule produces cuts of lower degree, and those can be eliminated, by induction.
Now for the case whereankr (M) + ranky,(N) > 2, in which degree is fixed and we argue by

reduction of rank. Without loss of generality, suppose thatkz()/) > 1. Because of its non-

minimal right rank,M cannot be an axiom. Suppodé¢ ends with a contraction. If the door of

the contraction is not among the markéd, then the contraction can be removed, and the cut can

be eliminated by induction hypothesis. Otherwise, we can remove the mark of the contraction’s

conclusion and mark the contraction’s hypotheses instead (“shrinkinigy expanding the multi-

contraction”). After that, the cut can be eliminated by induction hypothesis. Now supposk that

ends with a weakening. There are four sub-cases. (1) If neither of the weakening’s conclusions is

among the marke@'s, then the weakening can be removed, and the cut can be eliminated by induction

hypothesis. (2) If both of the weakening’s conclusions are among the méaiketthen we can apply

Rule WC, which enables the induction hypothesis. Now suppose that exactly one of the weakening’s

conclusions is among the markéts. (3) If that conclusion is the formula newly introduced by the
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weakening, thed/’s side of the multicut, modulo coherence of contraction, looks as follows:

By Rule W-MoVE, this is equivalent to

Now we can apply Rule WC, which enables the induction hypothesis. (4) If the marked conclusion
of the weakening is the formula to which the weakening was introduced, we have the situation below:

Either M’ has a doorB other than the twa’s, or N has a doorB other than its marked’s, for
otherwise the removal of the weakening would yield a proof of the empty sequent, in contradiction
to the system’s evident logical consistency. Owing to the re-wiring proposition, our rewrite rules
allow us to move the weakening 8. After that, the weakening can be removed, and the cut can be
eliminated by induction hypothesis.

What remains is the case wheYé ends with a (right) introduction rule. Becauseikr (M) > 1,
that rule cannot b& R. We already covered the cas&k, because it is a special form of weakening.
Now suppose the last rule 8f is —R, resulting in a doot- A. If that door is not among the markéts,
the negation-introduction can be removed, and the cut can be eliminated by the induction hypothesis.
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Otherwise, we have the situation below.

Using QUTC, we can transform this into the following net (where for the sake of presentation, we
omit drawing the outer contractions joining the two copiesvof

The empire ofA (i.e., the net which is the multicut betweéid’ and the left of the twaV) satisfies
the induction hypothesis, so the multicut can be eliminated, resulting in some cut-fré€'n&hus,
we obtain a net

The key point now is that we can assume without of loss of generality that the right rank of this
multicut is 1. For if this is not so, we can remove partsiaf’ until it becomes true (see Taljle|10).
Thus, the cut can eliminated by induction hypothesis.

The case wher@/ ends withvR works in the same way.

Now for the case wher®/ ends withAR. It is similar to the cases fotR andVR, except for some
minor complications: letd A B be the conclusion of that finalR. ThenM consists of a net/ 4 with
A as adoor and a nét/z with B as a door, linked by the finalR. There are two subcases. (1) The
conclusion of the finahR is among the marked's. (a) If bothM 4 and M have a doord A B among
the marked”'s, then two applications of € C (creating three copies @) yield three multicuts; the
multicut involving M 4 and the multicut involving\/g have smaller rank than the original multicut,
and can therefore be eliminated by induction hypothesis. For the remaining multicut, we can assume
without loss of generality that its left rank is(for reasons similar to the negation case explained
above). So the third cut too can be eliminated by induction hypothesis. (b) If only oh&yaind
Mp have a dooA A B among the marked's, we need only one application ofJ€C, but from then
on the argument is the same as for (a). (2) Suppose the conclusion of theRinginot among the
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markedC's. If only M 4, say, has a doad A B among the marked's, then the induction hypothesis
applies in a trivial way. If both\/ 4 and M have doors among the markét$, then one application
of CuTC (creating two copies aWV) yields two cuts to which the induction hypothesis applies, and
they can be eliminated independently. O

The cut-elimination theorem follows immediately from the Principal Lemma:

Theorem 3.5. Every net can be transformed into a cut-free one by using the rules in TdHlés 7, 8,
and[9.

4. NET THEORIES

Having studied cut-elimination, we are now ready to define the notions of equality and inequality
between proofs.

Linearly distributive categories provide the standard categorical semantics of the linear fragment
of the classical sequent calculus, and they admit all linear cut-reductions. They have nothing to say
(and do not need to say anything) about non-symmetric judgrménts N: either the morphisms
denoted by netd/ and N are equal or not. The case where the denotations are equal corresponds
to our judgments\/ = N. We want to keep this standard semantics of the linear fragment. The
local cut-reductions (Tab[g 7) take place in the linear fragment, which we want to keep modeling by
linearly distributive structure. Therefore, we require these reductions tovieeible—that is, we
require redex and reduct to be related ®iawhich is< N »=.

The non-local cut-reductions (Talple 8) cannot be kept as equalities because they rule out interesting
models: in the introduction, we already mentioned Lafont’s example, which shows that requiring
CuTW to be invertible rules owll interesting models. The net-version of Lafont's example looks as
follows:

<CUTW @ EWC
So if CuTW was invertible, therf; = M>, and therefore all proofs of would be equivalent. One
could of course blame WC instead of€W, but this would be evidently contrived, because WC
is a coherence law whose absence would cause the structure to be an abomination. By contrast, we
shall see ir§[g that dropping the invertibility of GTW can be achieved by softening the naturality of
projections into a lax naturality, which is a well-established categorical concept.

The invertibility of CuTC also kills important models. While we have no evidence that it makes
any two proofs of a formulal equivalent, we shall see kg that it rules out a desirable model: the
categoryRel of sets an relations. As we shall see, dropping the invertibilitywf C can be achieved
by softening the naturality of diagonals into a lax naturality, wheBley becomes a model.
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In this section, we shall define a notionraét theorywhose judgments are inequalities of the form
M < N, whereM and N are nets (with matching sequences of doors). This notion of theory con-
sists essentially of the local cut-reductions (invertible), the non-local cut-reductions (not invertible),
the coherence laws presented in TdBle 9 (which we motivated by cut-elimination), and some more
coherence laws explained in this section.

A signature with negatiolx consists of a sefly; of atomic formulae and a séty; of constant nodes

with at least one door, where the formulae in the doors are generateddor@imilarly, we define the
notion ofnet-signaturethe only difference being that the formulee in the doors must be negation-free.

Remark3. Constant nodes can cause logical inconsistency, like constantsirctileulus €.g, a fix-
point constant of typé¢ A — A) — A). Also, constant nodes can evidently obstruct cut-elimination.
But obviously, they are needed if nets are to serve as an “internal language” of the categories.

Constant nodes allow an important technical improvement: when we introduce constant nodes

and dually forvL. This anticipates the categorical semantics we shall present. (The benefits of using
these two constants were pointed outlin [4], where they were used, under themamesdw 43,

in the definition of “two-tensor polycategories”.) In fact, constant nodes can be used to replace all
unswitched rules (exceptud). In particular, we can replacel. and—R by constants

(However, we shall not introduce constants fof.\&hd WR, because they bring no advantage.)

Remarkd. There seems to be an analogy with the lambda-calculus: its higher-order nature allows to
add extra structure as constangsg( fiz : (A — A) — Aorcase : (A+B) — (A — C) —

(B — C) — C). Analogously, the cut rule of the sequent calculus allows to add unswitched rules as
constants.

A net over a signaturé& with negationis a graph generated from elementskof according to
Definition[4, except that the ruled., AR, —L, and—R are replaced by the respective constant nodes.
Also, from here on, we assume a linear order on the left doors, and a linear order on the right doors.
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() (vom) E AXA
WRE =

AXV

D @8 o A

TABLE 11. Expansions of axioms

Definition 5. A net theory7 overX is a set of inequalitied/ < N whereM andN are nets oveE
(with matching sequences of doors), with the following properties:

(1) The relationk is reflexive, transitive, and compatiblieg(, all net-formation rules are “mono-
tonic” with respect tox);
(2) The rules in Tabldg =2 hold (wheké = N meansM < N andN < M).

The equality laws in Tablds 11 aphd]12 are easy to justify: the axiom expansions ir{ Table 11 are
widely used by logicians. In the category we shall construct from nets, they correspond to the laws
ida ®idp = idagp, ida @ idg = idaep, and(ida)™ = id 4~. The equation WISTT is an evident
coherence law: it states that if we introducé an the left when there already is anotigrwe cannot
distinguish the two afterwards. Dually fonifisT L. The laws WA and CA state that the rulesL,

WL, and Q. interact in a coherent way. Dually for the laws\Wénd Cv. As we shall see ifj[g, the
laws in Tabldg IP, together with those in Taple 9, amount to requiring that the categomyohnasgds
andco-monoids

5. LINEAR NETS AND LINEARLY DISTRIBUTIVE CATEGORIES

In this section, we shall show that introduggear-net theoriesre in perfect correspondence with
linearly distributive categories. Linear-net theories have neither structural rules nor negation, and the
only kind of judgment is of the formd/ = N. Much of our analysis reconstructs that which is found
in [2] but does so for Robinson’s nets [21], which are directly based on the sequent calculus. It is
necessary for our subsequent development.

In §[5.7, we shall present the interpretation of linear-net theories in linearly distributive categories.
The ambiguity of the decomposition of proof nete( the fact that it cannot generally be determined
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TABLE 12. Remaining coherence laws for net theories
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which rule is the “last”) necessitates a proof that the inductively-defined interpretation is well-defined.
This corresponds to the fact that the very syntax of proof nets already encodes some equalities of
linearly distributive categories. We shall make this precise in Theprem 5.1.

In §[5.3, we shall show that every linear-net theory forms a linearly distributive category (Theo-
rem[5.4) which is an initial model (Theorédm b.8), and prove completeness (Theolem 5.7).

In §[5.3, we shall add negation and show that all previous results carry over without problems.

As explained in Remark]2, a correspondence between proof nets and linearly distributive cate-
gories has already been shown [2], but the nets we use, and our definition of equality between them,
differ from the ones inJ2] because of our focus on cut-reduction. Therefore, we need to discuss this
correspondence in detail.

Definition 6. A linear net over a signatur& is a net ove without occurrences ok_,, K_g, CL
and R, such that W. occurs only withB = T (in which case we writé L instead of W.), and WR
occurs only withB = 1 (in which case we writel R instead of WL).

Definition 7. A linear-net theoryZ over a signaturé& is a set of equalitied/ = N whereM and
N are linear nets oveX (with matching sequences of doors), such thais a congruence which
contains all instances of @A, Cutv, CuTT, CUuTL, CUTAX, W-MoVE for C' € {1, T}, AXA,
AXV, TWISTT, and TwiIST.L.

So linear-net theories consist of equational judgméits N, in contrast to net-theories, which
consist of inequational judgmenfd < N. (However, the right conceptual view is that linear-net
theories have judgmenfd < N where< happens to be symmetric.)

5.1. Categorical interpretation of linear nets. An interpretationof a linear-net theory in a lin-
early distributive categor sends a formulal of 7 to an object A| of C according to the rules

[ANB| = |A] @ |B] [T)=1 AV B|=|A|©|B] [L]=0

(So an interpretation of formulee is determined by the interpretation atomic formulee.) As mentioned
earlier, the interpretation of nets cannot simply proceed by induction, because the ambiguity of de-
composition. We shall therefore start with an interpretatiosefalizedlinear nets, which are nets
together with information that removes this ambiguity: whenever there are two or more potential
“last” rules, the extra information specifies the choice of one rule. After defining the interpretation,
we shall prove that it does not depend on the serialization (Theorém 5.1).

A serialized linear net with left doord, ..., A, and right doorsBy, ..., B,, is interpreted by a
morphism

A1 @@ |Ap] — |B1] ®-- @ | B

where® andd are deemed to be, say, left associative, the nullary prodactisd the nullary sum is

0. The rule AX is interpreted by the identity. The ruled. and TL are interpreted by pre-composing
the corresponding symmetric monoidal isomorphism associatedswitbually, VR and LR are in-
terpreted by post-composing the corresponding symmetric monoidal isomorphism associated with
The rule QT is interpreted by the categorical operatot, which takes as arguments two morphisms
f:A——> B®Candg: C® D — FE and is defined as follows:

. SR
cut(f,g) ::A®D@(BEBC’)@D—R»BEB(C(gD)@BEBE
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Specifically, the interpretation of the net

is given as follows:

| M | V]

A1®"'®Ai4’Bl@"'@Bj@C C®Az‘+1®"‘®An4’Bj+1@"'@Bm
SMd SMY
A®-- @A — (Bl@...@BJ_)@C C®(Ai+1®"'®An)4’ j+1@"'@Bm
cut
(A1® - A4)@An® @A) — (B1®--®Bj)®(Bjy1® - @ By)
SMY),SMDd

Ao(1) @+ @ Ag(n) — Br(1) @+ @ Br(m)

where sn® stands for pre-composing symmetric monoidal isomorphisms associated®wsimd
stands for post-composing symmetric monoidal isomorphisms associated yveititdo andr are the
permutations corresponding to the order of the new net's doors. The constantAiogesd K1,
are interpreted byd| 4| ] andid | 4| B, respectively.

Evidently, an interpretation of serialized linear nets is determined by the interpretationradrthe
logical constant node§.e., those which are nakl\,;, or K»R).

Theorem 5.1. For every interpretatior] — | of sequentialized linear nets, it holds that/'| = | M" |
whenevel!’ and M" are serializations of the same linear n&f.

Proof. Let C be a linearly distributive category, I8 be a signature, and I¢t- | be an interpretation
of the serialized linear nets ov&rin C. For every linear ned/, we have thesetof morphisms

S(M) = {|M'| : M’ is a serialization of\/ }

We prove that, for allM/, the setS(M) has only one element. The proof proceeds by induction
over the size of\/. The base cases §A 1 1, TR, and constant nodes) are trivial: there is only one
serialization ofd/. Now for the induction step. For every final rulef M, define

S, (M) := {|M'] : M is a serialization of\/ whose last rule is}

Obviously, S(M) is the union of all theS,. (M) (wherer ranges over the final rules @ff). By the
induction hypothesis, all serializations df minusr have the same interpretation. Therefore, every
S, (M) is a singleton set. So it suffices to prove that for every two final rul@sds, the setsS, (M)
andS, (M) are equal. We proceed by a case spli{ars).

Case 1: To warm up, consider the casés of typeAL ands is of typeVR. ThenM must have
the form
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Let g be the morphism which is (by induction hypothesis) the only elemef{ 6f). Define
netsN, and N, as follows:

dpod dwg

Let g, (resp.g;) be the morphism which is (by induction hypothesis) the only element of
S(N,) (resp.S(Ns)). By our definition of interpretation, we havg = g o i,, wherei,
is the symmetric monoidal isomorphism associated witlthat “puts the brackets around
|A| ® | B]". Dually, gs = is 0 g, wherei is the symmetric monoidal isomorphism associated
with @ that “puts the brackets around’| @ | D|]”. Now let M, be a serialization of/ with
last ruler. Let f,. be the morphism which is the interpretation .. By definition of our
notion of interpretation, we havg = g5 o4, = (is o0 g) o i,. Dually, let M be a serialization
of M with last rules, and letf, be the morphism which is the interpretation/df. We have
fs =is0g, =is0(goi,). By associativity ob, we havef, = f;. S0S,. (M) = Ss(M).
This case forr = AL ands = VR has a straightforward generalization to the case where

r € {AL, TL} ands € {VR, LR}, because all that matters is thais interpreted by pre-
composing a morphism, ands interpreted by post-composing a morphism. The categorical
law which is finally used is the associativity of

Case 2:1,s € {AL, TL}. In this case, we end up in a situation whgfe= g o i o i,, and
fs = g o jr o js wherei,, is, js, andj, are symmetric monoidal isomorphisms associated
with ®, andg is the interpretation of some subn€t We getf, = f; because, by symmetric
monoidal coherencé, o iy, = j5 o j,. Dually for the case, s € {VR, LR}.

Case3:r € {AL,TL,VR, LR} ands = CuT. (All that matters about here is that it is
interpreted by pre- or post-composing a morphism.) Without loss of generality=enL.
The situation is as follows:

:

S

We getf, = fs because pre-composition of a morphism commutes with the categorical oper-
ator cut, as can be easily checked.
Case 4:r,s = CUT. Then we have
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The two possible caseX, = Y andX # Y, correspond to two laws gfolycategoriesvhich
are well-known to hold in a linearly distributive category (Laws 3 and 4 in Definition 1.1
in [4].)

O

Now we turn towards the soundness proof. It relies heavily on the following lemma, which is the
semantic counterpart ofrAx.

Lemma 5.2. The equation below holds in every linearly distributive category.
U-leved Ae1l% A

U1l—VaA

Proposition 5.3(Soundness)Let | —| be an interpretation of linear nets over some signatir&hen
the judgments/ = N such thatf M/ | = | N | form a linear-net theory.

et = Ul U-L.vaea

Proof. First we prove the soundness o €A x. Without loss of generality, suppose that= R. If
the domain and codomain ¢/ | areU andW, respectively, then the interpretation of

v

IS

v 2w 1Al L (4]
SMP SMK
U—Vao|A] Al @1 — |A] .
CUuU

U®l— Va&l|A
SMY, SMH
U—W

By Lemmg 5.2 and symmetric monoidal coherence, this is equaltp
Now for the soundness of &Iv. BecausevL is expressed in terms of the constdtit;, (as
explained in Sectiop|4), it suffices to show that the interpretation of

(13)

is equal to| L|. If the domain and codomain ¢f. | areU andW, respectively, then the interpretation

of Net[13 is
id

u |A] @ |B] == |A]®|B|
UHVGB(LAJ@LBJ)SW@ (lAl®|B))®1 —" |A] & |B] cut
U1 —Va (Al @|B])
SMB, SMR
U—W

By Lemmg 5.2 and symmetric monoidal coherence, this is equal foDually for CUTA.
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The soundness of @r L also follows from Lemma 5|2, by a straightforward argument, and dually
for CuTT.

The soundness of W-BWVE (for C € {L, T}) follows immediately from symmetric monoidal
coherence.

Proving the soundness ofx4 boils down (by using OTAX) to showing that the interpretation of

is id| 4xp)- This follows directly from symmetric monoidal coherence. Dually for\A
The soundness of WISTT and TwisTL follows immediately from symmetric monoidal coher-
ence. ]

5.2. Completeness of linear-net theories.
Theorem 5.4. Every linear-net theory” forms a linearly distributive categoty;.

Proof. The objects of the linearly distributive catego@ are the formulee off. A morphism

A —— B is a proof net with a dood : L, a doorB : R, and no other doors. The categorical
operators are defined in to Talple] 13. (The missing ones are given by duality and symmetry.) The
associativity of composition is trivial and requires no equational law. The neutrality of the identity
is stated by the law GTAX. That the functorr preserves composition is stated by1\, and that

it preserves identities is stated byA. Now for symmetric monoidal coherence. Thwg{ is self-
inverse follows from cuttingrg’B againstag’A, followed by an application of GTA and a reverse
application of A&XA. The same technique shows that is an isomorphism. The inverse pf is the

net below. Thapg o p;;' = id follows from cuttingpg andpg' with cut formulaA A T, followed by

an application of ©TA, then QUTAX, then QJTT.

Proving thatpé)l o pg = id is tricky; this confirms the old wisdom that units are often the most

difficult aspects of the equational theory of sequent calculusgsgd2]). Cutting ,oggl andpg with
cut formulaA and applying ©TAX yields the net
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TABLE 13. The linearly distributive category of linear nets

Another application of OTAX yields

33
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Applying W-MOVE yields

The point is that the left of the two occurrencesTot L is now the one which is “introduced by the
weakening”. Applying @TT yields

This net is the identity by AA.

The naturality olng andog is straightforward and relies only onu@A and GQJTAX. The natural-
ity of pg follows from CuTA, CUTAX, and W-MOVE; we leave the details to the reader. Checking
symmetric monoidal coherence (Diagran$]1-6) is also straightforwarde 8wms a symmetric
monoidal product. Dually foe.

Now for the coherence laws involving the distributivity. To see that Diagjiam 7 commutes, note that
(A\g @ id) o 6F, after applying @TV, CUTA, and QUTAX, is equivalent to

TA(AAB).L
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By re-wiring and A A, this is equivalent to

TA(AAB).L

which is\g by definition.
Diagrams 7, 8,19, arjd L0 follow from straightforward calculations usiag\G CuTA, and QUTAX.
t

Now we turn towards completeness and initiality. Both results rely on the following lemma.

Lemma 5.5. Let7 be a linear-net theory, led/ be a net of7” with left doorsA;, ..., A, and right
doors By, ..., By, and letCr | M | be the interpretation of\/ in Cr. If n > 0 andm > 0, then
Cr | M| is the equivalence class (w.r.t. equalityin 7') of

(14)

where the left “rule” ending in4; A ... A A, stands fom — 1 applications of the rule\L, the right
“rule” ending with B; Vv ...V B, stands form — 1 applications ofvR. If m = 0 (and therefore
n > 0), | M | is the equivalence class of

(15)
and dually for the case = 0.
Proof. By laborious induction over the size o1 . O

Proposition 5.6. In every linear-net theory, for any two nets\/ and N with matching sequences
of doors, it holds that

M=Nin7T ifandonlyif Czy|M|=Cr|N]
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Proof. By Lemma 5.5, we hav€y | M| = Cr | N| ifand only if M’ = N’ in 7, whereM’ is the
netin Picturé 14 dr 15 in Lemnja 5.5, and similarly féf. As can be easily checked, this holds if and
onlyif M =NinT. g

Now completeness follows immediately:

Theorem 5.7 (Completeness)Let 7 be a linear-net theory, and let/ and N be nets of7 with
matching sequences of doors. If the equatiér= N holds in every model ¢, thenitis in7 .

Theorem 5.8(Initiality). For every modelC |—]| : 7 —— C of a linear-net theoryZ, there is a
unique functorf’ : C;r —— C that preserves all linearly distributive structure on the nose and

makes the diagram below commute.
St
T

Proof. BecauseCr is bijective on objects, the object part 6fis uniquely specified. Furthermore,
every morphism oC7 is in the image ofC+ | —|: for if the morphism is the equivalence class of a
net)M (which by construction o€ 7 has only on left door and one right door), then by Lemim&a 5.5 it is
equal toCy | M |. Because of this surjectivity &+ | —|, F' is also uniquely specified on morphisms.
For F' to be well-defined, we need thaf = N in 7 impliesCy |M | = C7 | N, but this is just the
statement tha© | — | is a model. It remains to show th&tpreserves all structure on the nose. This is
a routine calculation irC. 0

Cr

Cr[-]

5.3. Adding negation.

Definition 8. A linear net with negation over a signatue with negationis a net over¥ without
occurrences € and R, such that W. occurs only withB = T, and WR occurs only withB = 1.

Definition 9. A linear-net theory with negatiofi over a signatur& with negation is a set of equalities
M = N whereM and N are linear nets with negation ov&r(with matching sequences of doors),
such that= is a congruence which contains all instances off@, Cutv, CuTT, CuTL, CUTAX,
Cut—, W-MoveEe for C € {L, T}, AXA, AXV, AX—, TwISTT, and TwIST.L.

An interpretation of a linear-net theory with negatiama linearly distributive category with nega-
tion is defined like an interpretation in the absence of negation, plus the following two requirements:
first, negation of formulee is interpreted according to the rule

[~A] = [A]”

Second Ky, is interpreted by the map” : |A]* ® [A] — 0. Dually, K_g is interpreted by the
map7f:1 —— |A| @ |A|*. The following two lemmas are the key to soundness:

Lemma 5.9. The equation below holds in every linearly distributive category with negation.
l1— A A" A*®A—0
cut )
1A — A0 = id 4
SMY), SMb
A— A

Proof. After expressing the categorical operatatt in terms of the linear distributivity, the claim
follows from Diagranj I]L in the definition of a linearly distributive category with negation. [
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Lemma 5.10. The equation below holds in every linearly distributive category with negation.

11— A A 2A"D A AQ A" 2 A" A ——0
cut

I A" — A"30 = id A+
ye e SM, sMb

Proof. After expressing the categorical operata#t in terms of the linear distributivity, the claim
follows from Diagranj IP in the definition of a linear distributive category with negation. O

Proposition 5.11(Soundness)Let | —| be an interpretation of linear nets with negation over some
signatureX with negation. Then the judgmemt$ = N such that| M| = | N | form a linear-net
theory with negation.

Proof. Proving the soundness ofu@— boils down (by using OTAX) to showing that the interpreta-
tion of

is id| 4. This follows directly from Lemma 5|9.
Proving the soundness of¥A- boils down (by using OTAX) to showing that the interpretation of

is id| 4| This follows from Lemm@O. O

Theorem 5.12.Every linear-net theory with negation forms a linearly distributive category with nega-
tion.

Proof. We start with the categor¢ from Theorenj 54 and define
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To check Diagrarh 11, we show thag o (v & id) 0 6} o (id ® T7) 0 ' = id. To see this, note that

. _ A(TAVA): . ATAWVAL
(id ® %) o,0®1 = doo(YEr@id) =

which follows from QUTAX, CuTA, CuTT in case of the left equation, and fromu€Ax, CuTyv,
CuTL in case of the right equation. Connecting these two nets &fitand simplifying with QJTV,
CUTA, and QTAX yields

By CuTt— and QUTAX, this is equivalent tad 4.
Diagrant 12 is checked in a similar way, except that (crucially!) the last step usesrstead of
CuT—. g

Lemmg 5.5 carries over without problems to the situation with negation. Thus, completeness and
initiality can be proved as in the negation-free case.
6. SEMANTICS OF WEAKENING AND CONTRACTION

The nave semantics of weakening and contraction is evident: require the linearly distributive cat-
egory with negation to have finite products and coproducts, and extend the notion of interpretation as
follows: the net below, where we assume that the dborL is betweemd, and Ay 1,

is interpreted by
[A1] ® - © [Ae] © [A] @ [Ap41] @ -+ @ [An]

> (A1 @ ®[An]) ® [A4] el (A1l ®@---®[A]) ® (Al ® [A])
2 A0 A ®Al QA @ ® |4 @ |A] @ [Ajj1] ® - ® | Ay

MoB@-a (B
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where A is the diagonal associated with the finite products. The rule i8Vinterpreted similarly,
except that the morphism which is pre-composettb| is built by using the projectionA| — 1
instead ofA. Dually for CR and WR.

But net-theories are not complete for models with finite products and coproducts: for example, the
terminal object would necessitate the law

which in categorical form ig) o f = (). Owing to QUTW, all net-theories have the left-to right
reduction=<. But to escape the coIIapse cause by Lafont’s example, we had to drop the coaverse
Similarly, finite products would necessitate the law

7

which in categorical form is essentiallyo f = (f ® f) o A. Because of OTC, all net-theories have
the left-to right reductiong. But the converse- does not generally hold. (As we shall s&xl is a
counter-model.)

Therefore, we shall weaken the requirements imposed on diagonals, projections, co-diagonals, and
co-projections. We shall proceed as follows:

Section[6.1: To each object, we add a monoid structure with multiplicati®8h: AeA — A
and unit[] : 0 —— A. Dually, we add a co-monoid structure with co-multiplicatian:
A —— A ® A and co-unitA —— 1. This structure is enough to interpret weakening and
contraction;

Section6.2: However, we shall see that this structure does not generally adomit\Cand
CuTC. To address this issue, we shall introduce an order-enrichment, together with some
conditions about the interaction between the monoids, the co-monoids, and the order. We call
the resulting structuredassical categories-inally, we shall prove soundness, completeness,
and initiality of classical categories with respect to the classical sequent calculus.

In particular, we shall see that:

(1) There is a remarkably close correspondence between the coherence laws for nets [} Tables 9
and 12 and the equational laws for the monoids and co-monoids. This will become evident in
the proof of Theorer 6]2;

(2) The proof of soundness (Theorgém|6.4) is unusually informative: it reveals that bat/C
and QUTC combine two very different categorical manipulations in one step.

6.1. Monoids and co-monoids. In this section, we shall define what it means for a linearly distribu-
tive category tcdhave monoids and co-monojdmd show that the linearly distributive category built
from a net theory has such structure.



40 CARSTEN FJHRMANN, DAVID PYM

First we recall what it means for a symmetric monoidal categohatae monoicﬁ

Definition 10. Let C = (C,®,0) be a symmetric monoidal category. ¥mmetric monoidn C
is given by an object4, together with two morphism¥ 4 : A A —— A and[|4 : 0 —— A,
satisfying the usual equations

d
(Ao ea L2 404
ﬂx
v
Ao (A A Ae A
DA Fog 40
id @ | @ id

AD) —— AgA~—00 A

19 v
o 4;\\ /é;

A
Ad A
QA
(20) oo A
Apa V

C has monoidsf there is a chosen symmetric mondid, V 4, [] 4) for every objectA, compatible
with the symmetric monoidal structure in the following sense:

ADB®A®B
VaeB

(21) id ® o ® id ® B

ApAeBaB Va®Vs

0
ADB
(22) Ag = Pa © B
0 lae® B
(23) Jo=1ido:0—0

(In the last diagram, some obvious associativity isomorphisms have been omitted.)
Note that Equations 21 afd]22 simply state that the monoidal operations at compound carriers
A @ B are definepointwisein terms of the operations of the carrietsand B. Equatior] 2B can be

1This definition is taken from fron [22], except that Selinger’s paper deals with the more general pasmonhoidal
categories and uses the terminology “has co-diagonals” instead of “has monoids”.
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seen as the nullary case of Equafioh 22. The nullary case of Eqfiajidry23,\s, is easily seen to
be derivable.

Note also that we do not require the families of maps and[| 4 to be natural in4. In other
words, we do not require all maps @fto be monoid-homomorphisms. Instead, we call a morphism
f: A —— B copyabldf the diagram

AdA— A

fer |/
BB —B
commutes, andiscardableif the diagram
0—— A

]

0 B
commutes. This terminology was introduced by![23] and also used in [22] 8, 13]. (However, those
publications deal with the semantics of functional programming languages and natural-deduction cal-
culi, and thegremonoidakategories they use differ significantly from linearly distributive categories.)
The mapf : A —— B is calledfocal if it is both copyable and discardable.

Note that to say thaf is copyable is to say that preserves the monoidal multiplicatiGin—that
is, f is a homomorphism of semigroups. To say tlidas discardable is to say thdtpreserves the
monoidal unit]. To say thatf is focal is to say thaf is a homomorphism of monoids.

Thefocusof C is defined to be the Ilﬁfsubcategory of focal maps.

Dually, we define what it means for a symmetric monoidal category: (C,®,1) to have co-
monoids and the notionso-copyableco-discardableco-focal andco-focus (Caution: the notions
“copyable”, “discardable”, and “focal”, in_[23,/ 8, 13] correspond to our notions “co-copyable”, “co-
discardable”, and “co-focal”. However, our terminology agrees with [22].)

As observed in[22], the focus of a symmetric monoidal category with monoids is closedd&inder
and contains all structural mapsq, \s, pe, 0e, V, and[]), as well as the co-projections

—1 .
wi AL A0 AeB

AL i
A2 00A e 4B

Furthermore, the focus has a canonical finite coproduct structure:

Lemma 6.1. In the focus, the object is initial, and & is a coproduct with injections, and ., and
co-pairing
f@g \v
[f,g=A®B 5% CapC ——~C
In fact, the focus is the largest subcategory on whictestricts to a coproduct.

Examplel. The categornRel, whose objects are sets, and whose morphidms— B are subsets
of the set-theoretic produet x B. The functorsg and® coincide: the setsl ® B andA & B are
simply A x B. The unitsl and0 are the singleton s€t}. Givenf : A — Bandf' : A/ — B/,
the morphismf @ f'=f @ f': Ao A’ — B ® B’ is defined to be

{((z,2"), (1,9)) : (z,y) € fA(2",9) € f'}

A subcategory ofC is calledlluf if it has all objects ofC.
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The setd* is simply A. The lawl — A @ A* of the excluded middle i§(x, (xz,z)) : x € A}, and
dually for the contradiction lawd* ® A — 0. The monoidal and co-monoidal operations are

Va=A{((z,z),z):zc A} Jla={(xz2):z e A}
Ap={(z,(x,2)):x € A} Oa={(z,%):x € A}

Example2. Every Boolean latticd. The objects are the elementsBf and a morphismd —— B

is a pair(A, B) such thatd < B. Composition and identities are trivial. The functoris given by
the infimum operaton, and® by the supremum operater. The objectl is the greatest elemerit,

ando is the smallest elemedt. The linear distributivity is the lamd A (BV C) < (AA B)V C which

holds in every Boolean lattice. The operater)” is the complement operator &. The monoidal
multiplicationV 4 is the idempotency lad vV A = A, and the monoidal unit is the inequality < A.

Dually for the co-monoidal structure.

Obviously, given two linearly distributive categori€sand C’ with negation, monoids, and co-
monoids, the product catego€y x C’ has again such structure. In particular, we have

Example3. Rel x B for every Boolean latticd. In such a category, we hade # & (other than in
Rel), and there are hom-spaces with more that one element (other tljn in

Theorem 6.2. For every net theoryl, the linearly distributive categor¢s has monoids and co-
monoids.

The proof of this theorem highlights the close correspondence between the equational laws for the
monoids and co-monoids and the coherence laws for nets in Tables 9land 12.

Proof of Theorerp 6]2We start with the linearly distributive category from Theorien 5.4. We prove
thatC has monoids (the existence of co-monoids follows by duality). Define

To see that Diagrafn 18 commutes, note that both nets, after simplification witkr @d QUTAX,

are the same up to Cgsoc Diagran] 2P commutes because both nets, aftemCand QUTAX, are
the same up to GwisT. Diagran] 2]l commutes because both nets, after\Cand QUTAX, are the
same up to @. To see that Diagrain 19 commutes, note that thevhet([] @ id), after QUTV and
CUTAX, is
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Re-wiring yields

which is equal tgz' by WC. To see that Diagrajn 2 commutes, note that thé[het [|z) o Ae,
after QuTv, is

Re-wiring yields

After CuT_L and QUTAX, thisis

43
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which is equal td] 4¢3 by WV. To see thaf]y = idy, note thaf], is equal to

But the | : R to which the cut is connected is not the one introduced by the weakening! However, by
Rule TwisTL, we get

By Rule QuUTT, this is equivalent tad;. O

6.2. The order enrichment. Linearly distributive categories with negation, monoids, and co-monoids
provide interpretations of net theories. However, they are not good enough to count as models be-
cause they may fail to admit@C or CUTW. To see how ©TC may fail to be a semantic equality,

note that in any net theory we have (where\ g denotes the evident net corresponding to the co-
multiplication B —— B ® B, and, recalling that in Rel is the singleton set] 5 denotes the evident

net corresponding to the urtit— B)

Apollp s ([p@[lB) o AL

modulo the equivalencesu@A, CuTv, and QTAX. (This is the left-to-right reduction in Equa-
tion[17 with M = []5.) But, inRel, the interpretation of the redex turns out tofde, (z,z)) : = €
B}, whereas the interpretation of the reduct turns out t§(be(x, y)) : =,y € B}.

To see how ©TW may fail to be a semantic equality, suppose that every interpretation admits
CuTtW. Then the reductions in Lafont's example would be interpreted by equalities, and therefore
any two nets with only dood : R would have the same interpretation. ButRel, as explained
above, we havé\g o [|p # ([[z ® [|B) o A, for non-trivial B, and thus we have two different
morphisms9) —— B ® B, both of which are denotable by nets.

To model QWTC and QWTW adequately, we introduce an order-enrichment.oBlered category
we mean a category together with a partial order on every hom-space, such that the composition of
morphisms is monotonic. (In the jargon of enriched category theogypaghriched category”, where
po stands for the category of partial orders and monotonic functions.)

Definition 11. A classical categorys an ordered linearly distributive catego€y with negation,
monoids, and co-monoids, such that®, and the negation functor are monotonic in all arguments,
and the following inequalities hold (whefferanges over arbitrary morphisms ©):
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A— AR A A « A A
ALAX f < lf@f f < fof VLAX
C —>CxC C<—VC®C
a0 R L
()LAX fl < lid f < (id [JLAX
C 1 C 0
() [
A v
AgC (A C)®(Aa () ARC — (AR (C)® (AR (C)
o K
A (Ce (A () AR (Co (A® ()
AV iddA < lz‘d@dﬁ id ®V < Izd@éR
A (A (C®(0)) AR (A (Ca ()
o K
A®(C®C)V@z‘d (A (Cx() A®(C®C)A ¥ (AR A)® (CaC)
Ao C 0 1 A®C < [ 0
01 id @ () l < Ae id @ ] < Ag Ol
A@1<WO@1 A®OW1®O

Example4. Rel, where the order between morphism is the set-theoretic inclusion of morphisms.
Also, every Boolean lattice, where the order between morphisms is trivial (because hom-spaces have
at most one element).

Obviously, given two classical categori€sandC’ the product categor§¢ x C’, which we already
observed to be a linearly distributive category with monoids, co-monoids and negation, is again the
classical category with

(f. 1) < (9.9

) &= f<gandf <
In particular, we have

Examples. Rel x B is a classical category for every Boolean latfige

A more substantial model, based on the Geometry of Interaction, is presentéed in [7]. (The details
are beyond the scope of the present paper.)

The use of the eight inequality laws will be explained precisely in the soundness and completeness
proofs. However, we shall first explain these laws in a more intuitive way. TheNawx, which
states thaf\ is a “lax natural transformation”, is essentially the left-to-right reduction in Equtipn 17.
(As observed earlier, the conversedoes not generally hold.) This reduction is possible owing to
CuTtC. But QuTC is more powerful, in a subtle way: note that the Aétin Equatior{ I} has only
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one right door,B, which is the cut formula. However, the rule&y€C allows M to have further right
doors which are not used in the cut, for example

The key point is that the right dodr is copied, and we must undo this withiight contraction. This
compensation has nothing to do with the |&i.AX. It is captured by the lawAV, which states that
“copying too much and then compensating by co-copying may increase the denotation”.

Similarly, the law()LAX, which states thaf) is a lax natural transformation, is essentially the
left-to-right reduction in Equatign 16. This reduction is possible owingua @, but QuTW is more
powerful. Consider the following instance ofuCC:

Here the key point is that the right do6tis discarded, and we must compensate for this witiglat
weakening. This compensation has nothing to do with the(jawax. It is captured by the law)[],

which states that “discarding too much and then compensating by co-discarding may increase the
denotation”.

Theorem 6.3. Every net theory forms a classical category.

Proof. Let 7 be a net theory. By Theorem 6.2, we know tiat is a linearly distributive category
with negation, monoids, and co-monoids. DiagrahAx is, modulo QWTA and QUTAX, and in-
stance of @TC. Dually for DiagramVLAX. Diagram()LAX is, modulo WTAX and(); = id;, an
instance of @TW. Dually for Diagram[]LAX.
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Now for DiagramAV. We have

CUTAX

CuTC (the bold subnet got copied)
=(V@id)oago (id®d)odoA CuTA, CuTV, CUTAX, C-TWIST

The key point is that GTC introduces the “compensating contraction” for the right Dually for
DiagramV A.
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Finally, we show Diagran)[]. We have

CUTAX

CuTW (the bold subnet got discarded)

CutlL

re-wiring
= (@ id)oAg o) Cutv, CUTAX
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The key point is that CTW destroys the axiom link between the lgffland the rightd and introduces
“compensating weakening” instead. Dually for Diagrg. O

Now we finally get to the first main theorem:

Theorem 6.4 (Ordered soundnesskor every classical-category interpretatign- | of nets over a
signatureX, the judgmentd/ < N such that| M | < | N] form a net theory.

The proof of this theorem obviates the necessity of all eight inequalities in the definition of a
classical category.

Proof. Because we already have soundness for linear-net theories with negation (Proposition 5.11),
and because we have the monotonicityoks, and negation, which implies thatis compatible (in
the sense of Definitign 5), it remains to prove the soundness of the inequalitid @d QTC, and
the equalities C-Asog C-Cross C-twisT, WC, W-MovE, WA, WV, CA, and C/. For each of
the equalities, the two sides correspond to different ways of pre-composing projections and diagonals,
or different ways of post-composing co-projections and co-diagonals. But it is evident that, for each
equality, these two ways are semantically the same, because of the finite products on the focus and the
finite coproducts on the focus (Leminal6.1).

Now for the soundness of @W. Without loss of generality, lef = L in the presentation of
CuTW in Table[8. It is easy to see that the soundness follows from the law

f / 2 g /
(24) A— A C C®BHB;}BCutgA@B&BLB/i’A/@B/
A B — A @B

To see the that Inequalify R4 holds, consider the following diagram:

A® B 2 - B I . p
N@\Z‘d /
f®id < 1® B
e L2 = LQ
Up)

() ®id <

Y Y Y
AaC B— A C®B - A B Ao B
4e0)e 5 ®(Ce5) id & ® id ® g @

The lower-left leg is the left side of Inequality[24 (by definition of the categorical opetatdr The
inequality in the leftmost triangle holds because of Conditjdnax in the definition of a classical
category. The two equalities in the triangles hold by definition.0fThe equality in the square holds

by naturality ofio. So it remains to prove the inequality in the rightmost triangle. To see this, consider



50 CARSTEN FJHRMANN, DAVID PYM
the diagram below.

™2

(AeC)®B ~ B

() ®id s

IN
—
&
S

id @ () ® id

Y

A'® (C® B)

id & o ® B

The square containing the inequality follows from Conditipp in the definition of a classical cate-
gory. All other parts of the diagram commute: the top and bottom triangle by definitiagn. oFhe
rightmost triangle by definition of,. The leftmost square and the innermost square commute owing
to the naturality oﬁﬁ. The innermost triangle is, up to symmetry, the coherencalaw 7 in the definition
of a linearly distributive category. The upper-right square holds owing to the naturality,@nd the
lower-right square becauseis functorial.

Now for the soundness of @ C. Without loss of generality, leK = L in the presentation of
CUTW in Table[8. It is easy to see that the soundness follows from the law

At Bac C®1l&cuﬁ*0®c¢hz>t
(25) A®1—B®D “
A—+BaD

P

At.Bac cewc-4-D
A®C ——~ Ba& D
< f g
< 4-1.BgcC CoA——>BeaD t
Cu
A®A—~Ba(BaD)
A—~B@®D

®

,a@,V
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To see the that Inequalify 5 holds, consider the following diagram:

51

A8 L Aaga—T%" | Bacyea R - B3 (C®A)
“1 , id ® (id ® f) .
P id® f id @ og
® tof /
Y Y 5R Y
A®1 (BeC)®(BaC) & Bo(C® (B®C)) B®(A®C)
A
id @ 6% w id ® (f ® id)
Y Y
f®id < Ba®(Ba(C®C)) Ba(BaC)®C)
f < ag id\EB(idEBU®) id @ 58
4 \ \ \
(BaC)®1 A (B&B)®(C®C) Ba(B® (C®C))
s w ce id @ (id B g)
Y Y
oR £® B®(C®C) (B®B)® (C®C) B& (Bo D)
id®og YV P id id @ g o
id ® A
Y
1 > >
B®(C®1) T BeoC Y B (C®C) (BeB)® D
V& id
id P g
B&®D

The lower-left leg is the left side of Inequalify |25, and the upper-right leg is the right side. The
left inequality is ConditiolALAX from the definition of a classical category. The right inequality is

ConditionAV. The other parts of the diagram commute for straightforward reasons.

Now for the second main theorem:

0

Theorem 6.5(Ordered completenesslet 7 be a net theory, and let/ and N be nets ofl with
matching sequences of doors. If we hawé| < |N| for every interpretation of in a classical
category, then the judgmenf < Nisin7.

Proof. Lemma[5.b can be extended to the case with weakening and contraction. Thus, we get an
extended version of Propositign .6, for the case wieris a net theory andy is the classical
category from Theorein §.3. Now the claim follows immediately.

O

Theorem 6.6(Initiality). For every classical-category mod€l|—| : 7 —— C of a net theory7,
there is a unique functaF' : C;+ —— C that preserves all classical-category structure on the nose
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and makes the diagram below commute.
F

Cr C

o % )

T

Proof. As already mentioned in the ordered-completeness proof, Lémina 5.5, and consequently Propo-
sition[5.6, can be extended to the case with weakening and contraction. So the proof of initiality works
as in the linear case, except that it remains to prove that the fufi¢ciwhich is already known to pre-

serve the linearly distributive structure and negation, also preserves the monoids, co-monoids, and the
order. This follows from straightforward calculations in the classical category O
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