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ABSTRACT. It is well-known that weakening and contraction cause naı̈ve categorical models of the
classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the
well-known categorical semantics of linear classical sequent proofs, we give models of weakening and
contraction that do not collapse. Cut-reduction is interpreted by a partial order between morphisms. Our
models make no commitment to any translation of classical logic into intuitionistic logic and distinguish
non-deterministic choices of cut-elimination. We show soundness and completeness via initial models
built from proof nets, and describe models built from sets and relations.

1. INTRODUCTION

While the proof theory of propositional intuitionistic logic with disjunction, conjunction, and im-
plication obtains a clean interpretation in bi-cartesian closed categories, it is well-known that adding
the interpretation of a dualizing negation, to interpret the proof theory of propositional classical logic,
makes the categories collapse to Boolean algebras [15, 14].

Classical natural deduction [19] may be represented as terms of theλµν-calculus [17, 20]. Models
of λµν can be obtained in fibrations over a base category of structural maps in which each fibre is
a model of intuitionistic natural deduction and in which dualizing negation is interpreted as certain
maps between the fibres [16, 20]. (Alternative models are given by control categories and co-control
categories [22].) Whilst these solutions provides non-trivial categorical models, with computation-
ally significant examples, it relies on a choice of¬¬-translations of classical logic into intuitionistic
logic [24, 18]. Such a choice imposes a restriction on the equational theory of proofs which is most
readily apparent when one considers cut-elimination in the classical sequent calculus [9]. To see
this, consider the following example, due to Lafont [25, 12], in which the cut-redex has two possible
reducts:

··· Φ1

` A
WR

` A,B

··· Φ2

` A
WL

B ` A
Cut

` A,A
CR

` A

4
··· Φ1

` A
or

··· Φ2

` A

The loss of the symmetry of the sequent calculus forced byλµν’s choice of fibred model, admits only
the reduction toΦ2. In functional programming jargon,¬¬-translations are called “continuation-
passing-style” (CPS) transforms [18], and the transform chosen above validates equalities (between
λµν terms) typical for call-by-name. A call-by-value CPS transform would admit only the reduction
to Φ1. If the denotations ofΦ1 andΦ2 are made equal, then the collapse of the categorical model
follows.
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Thus we seek a semantics of the classical sequent calculus which is both non-trivial (i.e., not a
Boolean algebra), and symmetric in the sense that there is no enforced commitment to a particular
strategy of cut-elimination. To escape from the collapse, we shall weaken the assumption that the
redex and the reduct of a cut-reduction must have the same denotation: we shall only require that the
two be related by apartial order relation. Thus, we shall introduce a class of order-enriched categories
to model the classical sequent calculus which are

(1) non-trivial in the sense that there are hom-spaces with more than one denotable element,
(2) sound in the sense thatall cut-reductions are admitted by the partial order,
(3) complete in the same order-theoretic sense.

One challenge turns out to be the categorical interpretation of the structural rules. The naı̈ve approach
would be to use finite products (resp. coproducts) to interpret left (resp. right) weakening and contrac-
tion. But this would result in admitting both reductions in Lafont’s example (in the sense that redex
and reduct are equal), and so the models would collapse.

By contrast, it is known that there are non-trivial models of thelinear fragment of the classical
sequent calculus. To address the problems caused by the structural rules, we shall

(1) start with models of the linear fragment of the classical sequent calculus,
(2) endow every objectA with a monoid(∇ : A ⊕ A - A, [] : 0 - A) to model right

contraction and weakening, and a co-monoid(∆ : A - A ⊗ A,A - 1) to model left
contraction and weakening,

(3) add an order-enrichment, and
(4) introduce some delicate conditions about the interaction between the monoids, the co-monoids,

and the partial order.

Our chosen models of the linear fragment arelinearly distributive categories[4] (formerly called
“weakly distributive categories”).

The resulting order-enriched categories will be sound and complete with respect to cut-reduction
in the classical sequent calculus.

It is worth noting that, while our motivation is to present a non-trivial semantics of the classical
sequent calculus, the redex in Lafont’s example is actually intuitionistic, and contains neither negation
nor implication. However, Lafont’s example seems to rely crucially on the possibility of multiple
succedents (i.e., formulæ on the right side of the proof gatè). Thus, the minimal setting for a
semantic study of Lafont’s example seems to be themulti-succedent intuitionistic sequent calculus
[6] without implication.We implicitly cover this minimal setting, because our setting differs only in
that we add negationorthogonally.

While sequent proofs are our conceptual starting point, they contain a good deal of extraneous
information, which needlessly complicates the study of their semantics. This is well-known and one
of the reasons why sequent calculi are studied viaproof nets. Proof nets where introduced by Girard
for studying linear logic [10]. A different kind of proof net was used in [2] to build initial linearly
distributive categories. The connection between sequent proofs and proof nets is fairly obvious and
has been repeatedly formulated insequentializationtheorems which state that every proof net can
be turned into a sequent proof [10, 21] (the converse is almost trivial). Therefore, we shall switch
from sequent proofs to proof nets early on in this article. The proof nets we use where introduced by
Robinson [21] and possess rule nodes for weakening and contraction. They will in fact provide the
initial categorical model from which we derive our completeness result.

1.1. Construction of this article. In § 2, we shall recall the definitions of the classical sequent cal-
culus, Robinson’s proof nets, and linearly distributive categories.
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In § 3, we shall present cut-elimination for proof nets, thereby motivating§ 4, where we introduce
a notion ofnet theorywith judgments of the formM 4 N , which roughly mean that netM and be
cut-reduced to netN .

In § 5, we explain how linearly distributive categories form a sound and complete semantics of
linear proof nets (via an initial model build from proof nets). This is similar to [2], but there are some
important differences.

In § 6, we shall show how to extend linearly distributive categories with monoids, co-monoids, and
an order enrichment to provide a sound and complete semantics in the presence of weakening and
contraction. The completeness proof will employ an initial model built from proof nets. This model
will be unusually informative compared with typical term models in logics and computer science. The
non-triviality of the semantics will follow from a simple model built from sets and relations.

2. PRELIMINARIES

2.1. Classical Sequent Calculus.It is debatable what a natural-deduction system for classical logic
should be, and none of the proposed systems (e.g., [17]) adheres strictly to the introduction–elimination
format. By contrast, the classical sequent calculus is quite definitive, and has remained remarkably
stable since Gentzen. The main developments have been the investigation of tweaks to do with the
placing of structural rules, and an understanding, inspired by Girard, of the different implications of
choosing additive or multiplicative formulations of the rules. Later in this article, we shall introduce
proof nets as a more economic notation of sequent proofs; one of the lessons there is that the theory is
very smooth for the multiplicative connectives, but more problematic for the additives, which require
“boxes” to indicate subproofs [11]. We therefore adopt a multiplicative presentation of classical logic.

A sequenthas the formΓ ` ∆, where both theprecedentΓ and thesuccedent∆ are finite sequences
of propositional logical formulæ as given by the grammar

A,B ::= A ∧B | > |A ∨B | ⊥ | ¬A | b
whereb ranges over atomic formulæ. We consider implication to be derived — that is,

A ⇒ B := ¬A ∨B

The inference rules are presented in Tables 1 and 2. It is helpful for our purposes to consider the left
introduction rule>L (which is missing in Table 1) as a degenerate case of Rule WL, with A = >,
and dually for⊥R. When we refer to the classical sequent calculus, we mean the system presented
in Tables 1 and 2. When we refer to the linear fragment of the classical sequent calculus, we mean
the system presented in Table 1, plus the degenerate cases>L and⊥R of the rules WL and WR,
respectively.

2.2. Linearly distributive categories. Linearly distributive categories (formerly called “weakly dis-
tributive categories”) where introduced by Seely and Cockett in [4]. They have two binary operations:
a (tensor) “product”⊗, and a “sum”⊕. The key feature is a natural transformation

δ : A⊗ (B ⊕ C) - (A⊗B)⊕ C

called linear distributivity which is precisely what is needed to model Gentzen’s cut rule (in the
absence of other structural rules).

In this article, we shall only usesymmetriclinearly distributive categories, which have twist maps
A⊗B ∼= B⊗A andA⊕B ∼= B⊕A. This corresponds to the fact that the sequent calculus considered
in this paper admits the exchange law.

Next, we turn towards the precise definition of a symmetric linearly distributive category. To help
later reference, we shall present all details, starting with monoidal categories.



4 CARSTEN F̈UHRMANN, DAVID PYM

AX
A ` A

Γ, A, B ` ∆
∧L

Γ, A ∧B ` ∆

Γ ` A, ∆ Γ′ ` B, ∆′

∧R
Γ, Γ′ ` A ∧B, ∆, ∆′

Γ ` A, B, ∆
∨R

Γ ` A ∨B, ∆

Γ, A ` ∆ Γ′, B ` ∆′

∨L
Γ, Γ′, A ∨B ` ∆, ∆′

>R
` >

⊥L
⊥ `

Γ ` A, ∆
¬L

Γ,¬A ` ∆

Γ, A ` ∆
¬R

Γ ` ¬A, ∆

Γ, A, B, Γ′ ` ∆
EL

Γ, B, A, Γ′ ` ∆

Γ ` ∆, A, B, ∆′

ER
Γ ` ∆, B, A, ∆′

Γ ` A, ∆ Γ′, A ` ∆′

CUT
Γ, Γ′ ` ∆, ∆′

TABLE 1. Linear inference rules of the Classical Sequent Calculus.

Γ ` ∆
WL

Γ, A ` ∆

Γ ` ∆
WR

Γ ` A, ∆

Γ, A, A ` ∆
CL

Γ, A ` ∆

Γ ` A, A, ∆
CR

Γ ` A, ∆

TABLE 2. Weakening and contraction rules of the Classical Sequent Calculus.
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A monoidal categoryis a categoryC together with a functor⊗ : C×C - C, an object1, and
natural isomorphisms

α⊗ : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) λ⊗ : 1⊗A ∼= A ρ⊗ : A⊗ 1 ∼= A

satisfying the following coherence conditions.

((A⊗B)⊗ C)⊗D
α⊗- (A⊗B)⊗ (C ⊗D)

α⊗- A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D

α⊗ ⊗ id
?

α⊗
- A⊗ ((B ⊗ C)⊗D)

id ⊗ α⊗
6

(1)

(A⊗ 1)⊗B
α⊗ - A⊗ (1⊗B)

@
@

@ρ⊗ ⊗ id R 	�
�

�

id ⊗ λ⊗

A⊗B

(2)

1⊗ 1
λ⊗ -

ρ⊗
- 1(3)

A symmetric monoidal categoryis a monoidal category with a natural transformationσ⊗ : A⊗ B ∼=
B ⊗A such that

A⊗B
σ⊗- B ⊗A

@
@id R

A⊗B

σ⊗
?

(4)

1⊗A
σ⊗ - A⊗ 1

@
@

@λ⊗ R 	�
�

�

ρ⊗

A

(5)

(C ⊗A)⊗B
σ⊗ ⊗ id

- (A⊗ C)⊗B
α⊗- A⊗ (C ⊗B)

C ⊗ (A⊗B)

α⊗
?

σ⊗
- (A⊗B)⊗ C

α⊗
- A⊗ (B ⊗ C)

id ⊗ σ
?

(6)

A symmetric linearly distributive categoryis a categoryC together with two symmetric monoidal
structures(⊗, 1, α⊗, λ⊗, ρ⊗, σ⊗) and(⊕, 0, α⊕, λ⊕, ρ⊕, σ⊕) and a natural transformationδ : A ⊗
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(B ⊕C) - (A⊗B)⊕C satisfying various coherence conditions. Before stating them, we define
natural transformationsδL

L, δL
R, δR

R , andδR
L as follows:

A⊗ (B ⊕ C)
id ⊗ σ⊕- A⊗ (C ⊕B)

σ⊗ - (C ⊕B)⊗A
σ⊕ ⊗ id

- (B ⊕ C)⊗A

= = =

(A⊗B)⊕ C

δ
?

= δL
L

?

σ⊕
- C ⊕ (A⊗B)

δL
R

?

id ⊕ σ⊗
- C ⊕ (B ⊗A)

δR
R

?

σ⊕
- (B ⊗A)⊕ C

δR
L

?

In our statement of the coherence conditions, we shall use the following three symmetries (taken
from [4]):

op′: Reverse the arrows and swap⊗ and⊕, as well as1 and0. This gives the following assign-
ment of maps:

δL
L ↔ δR

R α⊗ 7→ α−1
⊕ α⊕ 7→ α−1

⊗
δL
R 7→ δL

R ρ⊗ 7→ ρ−1
⊕ ρ⊕ 7→ ρ−1

⊗
δR
L 7→ δR

L λ⊗ 7→ λ−1
⊕ λ⊕ 7→ λ−1

⊗
σ⊗ 7→ σ−1

⊕ σ⊕ 7→ σ−1
⊗

⊗′: Reverse the tensor⊗; this assigns

δL
L ↔ idR

L α⊗ 7→ α−1
⊗ α⊕ 7→ α⊕

δL
R ↔ δR

R ρ⊗ ↔ λ⊗ ρ⊕ 7→ ρ⊕
λ⊕ 7→ λ⊕

σ⊗ 7→ σ−1
⊗ σ⊕ 7→ σ⊕

⊕′: Reverse the tensor⊕; this assigns

δL
L ↔ δL

R α⊗ 7→ α⊗ α⊕ 7→ α−1
⊕

δR
L ↔ δR

R ρ⊗ 7→ ρ⊗ ρ⊕ ↔ λ⊕
λ⊗ 7→ λ⊗
σ⊗ 7→ σ⊗ σ⊕ 7→ σ−1

⊕

The coherence laws are as follows, where for each law we also require all versions generated by the
symmetriesop′,⊗′, and⊕′:

1⊗ (A⊕B)

@
@

@

λ⊗

R

(1⊗A)⊕B

δL
L

?

λ⊗ ⊕ id
- A⊕B

(7)
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(A⊗B)⊗ (C ⊕D)
α⊗ - A⊗ (B ⊗ (C ⊕D))

A⊗ ((B ⊗ C)⊕D)

id ⊗ δL
L

?

((A⊗B)⊗ C)⊕D

δL
L

?

α⊗ ⊕ id
- (A⊗ (B ⊗ C))⊕D

δL
L

?

(8)

(A⊕B)⊗ (C ⊕D)

	�
�

�δL
L

@
@

@

δR
R

R

((A⊕B)⊗ C)⊕D A⊕ (B ⊗ (C ⊕D))

(A⊕ (B ⊗ C))⊕D

δR
R ⊕ id

?

α⊕
- A⊕ ((B ⊗ C)⊕D)

id ⊕ δL
L

?

(9)

A⊗ ((B ⊕ C)⊕D)
id ⊗ α⊕- A⊗ (B ⊕ (C ⊕D))

(A⊗ (B ⊕ C))⊕D

δL
L

?
B ⊕ (A⊗ (C ⊕D))

δL
R

?

(B ⊕ (A⊗ C))⊕D

δL
R ⊕ id

?

α⊕
- B ⊕ ((A⊗ C)⊕D)

id ⊕ δL
L

?

(10)

For further discussion of the structure of symmetric linearly distributive categories, see [4]. For the
sake of brevity, we shall write “linearly distributive category” instead of “symmetric linearly distribu-
tive category” from here on.

To see how the linear distributivity can be used to model the cut rule, letf : A - B ⊕ C and
g : C ⊗D - E be morphisms. Then thecut off andg with cut objectC is

cut(f, g) := A⊗D
f⊗id- (B ⊕ C)⊗D

δR
R- B ⊕ (C ⊗D)

B⊕g- B ⊕ E

A linearly distributive category with negationis a linearly distributive category together with, for
every objectA, an objectA∗, and maps

γL : A∗ ⊗A - 0 τR : 1 - A⊕A∗

Together with the induced maps

γR : A⊗A∗ - 0 τL : 1 - A∗ ⊕A
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the following coherence conditions are required:

A⊗ 1
id ⊗ τL

- A⊗ (A∗ ⊕A)
δL
L- (A⊗A∗)⊕A

γR ⊕ id
- 0⊕A

HHHHHHHHHHHH

ρ⊗

j �������������

λ⊕

A

(11)

A∗ ⊗ 1
id ⊗ τR

- A∗ ⊗ (A⊕A∗)
δL
L- (A∗ ⊗A)⊕A∗ γL ⊕ id

- 0⊕A∗
HHHHHHHHHHHH

ρ⊗

j �������������

λ⊕

A∗

(12)

For further discussion of the structure of (symmetric) linearly distributive categories with negation,
see [4].

Remark1. As we shall see, linearly distributive with negation provide a sound and complete semantics
of the linear fragment of the classical sequent calculus. There is, in fact, an alternative class of models
whose definition does not require a linear distributivity, because it can be derived from universal
property of negation. These alternative models, which the authors introduced as “bi-∗-autonomous
categories” [3], are based on two families of adjunctions

A⊗B - C

A - B∗ ⊕ C

A - B ⊕ C

A⊗B∗ - C

These enable the derivation of a linear distributivity:

A⊕B
f- A⊕B

(A⊕B)⊗A∗ - B

B ⊗ C
g- B ⊗ C

B - C∗ ⊕ (B ⊗ C)

(A⊕B)⊗A∗ - C∗ ⊗ (B ⊗ C)

((A⊕B)⊗A∗)⊗ C - B ⊗ C

((A⊕B)⊗ C)⊗A∗ - B ⊗ C

(A⊕B)⊗ C - A⊕ (B ⊗ C)

It can be shown that bi-∗-autonomous categories (whose definition contains quite a few coherence
conditions not mentioned above) are equivalent to linearly distributive categories.

Bi-∗-autonomous categories seem quite appealing owing to their clear explanation of negation.
However, linearly distributive categories are ultimately much easier to work with, which is why we
finally adopted them as the basis of our semantics.

2.3. Proof nets. Proof nets were introduced by Girard for the study of linear logic [10]. They have
been applied to various other logical systems [2, 1]. In this article, they play a key rôle in the semantic
analysis of the Classical Sequent Calculus. The proof nets we use are the two-sided sequent-style nets
for classical logic recently introduced by Robinson [21].
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Roughly speaking, a proof net is a connected graph built from the figures in Tables 3 and 4, sat-
isfying a certain global condition. We begin formalizing this by recalling the following definition
from [21].

Definition 1. A proof structureis a bipartite directional graph whose two families of nodes are labeled
as follows:

Family 1: labeled by one of the sequent proof rules;
Family 2: labeled by a formula, together with the information Left or Right.

The graph is subject to the following additional constraints:

(1) The graph surrounding each rule node is given uniquely as an instance of the corresponding
figure (in Table 3 or 4);

(2) Each propositional node has a unique incoming and at most one outgoing arc.

There is some ambiguity in the phrase “the graph surrounding each rule node is given uniquely as an
instance of the corresponding figure”. We intend that this mapping is given as part of the structure of
the graph. In most instances, only one such mapping will be possible, but we will wish to distinguish
the two inputs to, say, an∧R even when they are instances of the same formula.

However, we still have structures which do no represent valid proofs, for example

These structures are eliminated by using a technique due to Danos and Regnier [5].

Definition 2. A (Danos-Regnier) switchingσ is the choice of one of the hypotheses for each node of
the following forms:[∧L], [∨R], [CL], [CR]. We shall say that the remaining nodes areunswitched.

The purpose of a switching is to generate a graph.

Definition 3. Let S be a proof structure andσ a switching on it. Then the (Danos-Regnier) graph of
σ, DR(σ, S), is the following undirected graph:

• Its vertices are the propositional vertices ofS;
• Its edges join conclusions of rule nodes to hypotheses as follows. If the rule node is unswitched,

then each conclusion is joined to each hypothesis. If the rule node is switched, then the con-
clusion is joined only to the hypothesis chosen byσ. The exceptions are axioms and cut,
where the two formulæ are joined.

Definition 4. A proof structureS is aproof netif for each switchingσ of S the Danos-Regnier graph
of σ, DR(σ, S), is connected and acyclic (as an undirected graph).

There is a straightforward procedure to turn a sequent proof into a proof net (see [21]). However,
the converse is a substantial theorem.
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TABLE 3. Proof nets: linear rules
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TABLE 4. Proof nets: structural rules

Theorem 2.1. Every proof net can be generated as the image of a sequent proof.

For the proof nets we introduced above, this theorem has been proved by Robinson [21]. (However,
for different kinds of proof nets, such theorems have been proved before.)

One possible reading of the sequentialization theorem is that a proof structure is a proof net if and
only if it can be built from the figures in Tables 3 and 4inductively like a sequent proof. Before
we formalize this, we introduce a more economic notation for nets, which is obtained as follows:
First, adopt the convention that proof structures are drawn in such a way that all of their edges point
downwards. Second, omit the arrowheads, which are now redundant. Third, for figures other than
AX and CUT, remove the rule nodes and connect the hypotheses directly with the conclusions. For
example, the figures for∧L, ¬L, and⊥L are represented by

respectively. The figures for AX and CUT are represented by

respectively. Note that by shifting to the new notation we loose no information.
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Now for the inductive presentation of proof nets. We let figures like

range over proof nets; in this example,M has doorsA : L andB : R (and maybe more), andN has a
doorA : R (and maybe more). The inductive definition of proof nets is presented in Tables 5 and 6.
We call a netlinear if it contains no rule nodes of the form CL, CR, WL, or WR, with the exception
that WL (resp. WR) is allowed if the formula introduced by the weakening is> (resp.⊥), in which
case we call the rule>L (resp.⊥R).

A propositional node of a net is called adoor if it has no outgoing arcs. Thekingdom(resp.empire)
of a propositional nodeA is the smallest (resp. largest) subnet withA as a door. It is proved in [21]
that the kingdom and empire of a propositional node always exist.

As mentioned in the introduction, sequent proofs contain extraneous information which is discarded
in proof nets. For example, consider the sequent proof

AX
A ` A

WL
A,B ` A

WR
A,B ` A,B

∧L
A ∧B ` A,B

∨R
A ∧B ` A ∨B

There are six variations of this proof with respect to the order in which the inference rules are used: (1)
WL-WR-∧L-∨R, (2) WL-WR-∨R-∧L, (3) WL-∧L-WR-∨R, (4) WR-WL-∧R-∨L, (5) WR-WL-
∨L-∧R, (6) WR-∧R-WL-∨L. The proof net corresponding to this proof, and all of its variations,
is

This illustrates that, by using proof nets, we no longer have to deal with permutations of rules. In
fact, the suppression of permutations is the only information loss in the transition from sequent proofs
to proof nets. (For a precise statement, see Proposition 3 in [21].) However, it greatly simplifies our
presentation.

Remark2. In this article, we shall build linearly distributive categories from linear proof nets (i.e.,
proof nets without weakening and contraction), as a first step towards our semantics of the classical
sequent calculus. In [2] too, proof nets are used in the construction of linearly distributive categories.
However, there are important differences between the nets in [2] and the ones we use. Our choice of
net is motivated by the study of cut-reduction. To this end, we need explicit cut links. In [2], where
the main purpose is showing categorical coherence, explicit cut links are not present, and not needed.

We shall in fact present, in loving detail, a cut-elimination procedure for nets. In our linearly
distributive category, composition will be defined in terms of the cut rule (not simply juxtaposition,
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AX

∧L ∧R

∨L ∨R

>L >R

⊥L ⊥R

¬L ¬R

CUT

TABLE 5. Inductive definition of proof nets: linear rules
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WL WR

CL CR

TABLE 6. Inductive definition of proof nets: structural rules

as in [2]). The categorical identities will be axioms (not the empty net, as in [2]). A good illustration
of the differences between both kinds of nets is our cut-reduction law CUTAX in Table 7. It is a
well-known step in cut-elimination, yet in cannot be stated in terms of the nets used in [2] (where it is
trivially valid, though).

Also, the way in which we present the equality of nets differs from that in [2]. For example, there is
a striking difference in the axiomatization of the units> and⊥. (In fact, our axiomatization requires
fewer equational laws than the one in [2]. This is possible because we allow ourselves to use thenon-
local law W-MOVE.) In particular, ourempire re-wiringresult (Proposition 3.4), which is essentially
the same as Proposition 3.3 in [2], is proved in a very different way.

3. CUT-ELIMINATION FOR NETS

Proof nets are our chosen representation of classical proofs, for which we are seeking a sound and
complete semantics. It is therefore essential to have a precise definition of equality between nets. This
equality must be based on cut-reduction, because that is the phenomenon we want to model. We shall
therefore present a cut-elimination procedure for Robinson’s nets [21], to demonstrate that the spirit
of our investigation does not depart from the sequent calculus. Our starting point is Robinson’s dis-
cussion of cut-reduction [21], from which cut-elimination is obtained (essentially) following Gentzen
[9] in the usual way. (Robinson has also worked independently on cut-elimination.)

The cut-reduction rules presented in this section will form the basis of our definition ofnet theories
in § 4.

The rules we use for cut-elimination are presented in Tables 7, 8, and 9. We useM ≡ N as an
abbreviation for the pair of rulesM 4 N andN 4 M . The capital lettersX, Y , andZ range overL
andR. We define a notation for switching sides,L = R andR = L, which is used in Rules CUTAX,
CUTW, and CUTC to avoid having to write two versions of each rule. The Rules CUT¬, CUT∧,
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≡ CUT¬

≡ CUT∧

≡ CUT∨

≡ CUT>

≡ CUT⊥

≡ CUTAX

TABLE 7. Local cut-reductions: logical cuts and cuts against an axiom

CUT∨, CUT>, and CUT⊥ are the well-known reductions of “logical cuts”. Rules CUTAX, CUTW,
and CUTC are also well known. The importance of the rules in Table 9 will become evident in the
cut-elimination proof.

The presentation of cut-reduction on nets highlights an aspect which is not so evident when sequent
proofs are used: the cut-reduction rules in Table 7 arelocal in the sense that only a tiny subgraph of
the net is rewritten. (The same is true for the coherence laws in Table 9.) By contrast, the rules
CUTW and CUTC are non-local: the changes may copy or discard arbitrarily large parts of the net.
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4 CUTW

4 CUTC

TABLE 8. Non-local cut-reductions: cuts against weakening and contraction

Therefore, we call the rules in Table 7 thelocal cut-reductions, and the rules in Table 8 thenon-local
cut-reductions.

(Note that we use≡ in all rules except in the non-local cut-reductions, However, in the cut-
elimination proof we shall use the rules CUT∧, CUT∨, CUT¬, and CUTAX only from left to right.
We shall justify the use of≡ in § 4.)

Lemma 3.1(Coherence of contraction). LetM be a net withn + 1 doors of the formA : L. LetM1

andM2 be any two nets that result fromM byn applications ofCL to theA : L (so finally only one
A : L is left). ThenM1 andM2 are equivalent moduloC-ASSOC, C-CROSS, andC-TWIST. Dually
for doors of the formA : R.

Now follows the Principal Lemma for cut-elimination. The horizontal dots stand for multiple
contractions (whose arrangement does not matter by Lemma 3.1).

Lemma 3.2(Principal Lemma). LetL be a net of the form

whereM and N are cut-free. ThenL can be transformed into a cut-free net by using the rules in
Tables 7, 8, and 9.
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≡ C-ASSOC

≡ C-CROSS

≡ C-TWIST

≡ WC

≡ W-MOVE

TABLE 9. Coherence laws needed for cut-elimination
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Thus, we essentially usemulticuts, as in Gentzen’s original proof.
Before we can prove the Principal Lemma, we need to prove a crucialre-wiring proposition

(Prop. 3.4), which states essentially that weakening links can be moved around freely. The re-wiring
proposition is necessary because, in contrast to the sequent calculus, weakenings in nets must be at-
tached to some existing node. Our re-wiring proposition is similar to Proposition 3.3 in [2]. However,
as mentioned in Remark 2, our axiomatization of the equivalence≡ of nets differs from that in [2].
Therefore, a new re-wiring proof is in order. First, a lemma:

Lemma 3.3. Whenever one (and therefore both) sides below are nets, one side can be transformed
into the other by using rulesCUT> (alternatively,CUT⊥) andW-MOVE.

≡

Proof. First, we transform the left net into the right one. By applying Rule CUT> backwards to the
kingdom (or empire) of the upperA, we obtain
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By applying Rule W-MOVE to the kingdom ofB, we obtain

By applying Rule W-MOVE to the empire of the lower> : L, we obtain

Now the right net in the statement of the lemma results from applying Rule CUT> forwards to the
empire of the lowerA. All rules we used are reversible, so we can also obtain the left net from the
right one. �

Proposition 3.4(Empire re-wiring). Weakenings can be moved around freely within the empire of the
formula they introduce, by using rulesCUT> (alternatively,CUT⊥) andW-MOVE.

Proof. By using Lemma 3.3 first forwards and then backwards. �

Our proof of the Principal Lemma relies on notions ofrank of a proof anddegreeof a cut, and
proceeds by induction on the measure(degree, rank), ordered lexicographically.

To define the net-version of the notion ofrank, we allow doors to be “marked”. A marked door has
the form

wherex ∈ {0, 1}. If x = 1, we call the doormarked, otherwiseunmarked. Next, we define a
decomposition relation⇒ between marked nets in Table 10. Intuitively, we haveM ⇒ M ′ if M ′ is
an immediate subnet ofM . However, the key property of⇒ is the propagation of marks along doors:
marks are propagated along contractions and along one side of weakenings, but not along introduction
rules. Theleft rankrankL(M) of a netM with at least one marked left door is the maximum length
n of a sequenceM = M1 ⇒ M2 ⇒ · · · ⇒ Mn such that allMi have at least one marked left door.
Theright rank rankR(M) of a netM with at least on marked right door is the maximum lengthn of
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⇒

⇒

⇒

⇒

⇒

⇐ ⇒

⇐ ⇒

TABLE 10. Decomposition relation for determining left and right rank of marked nets
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a sequenceM = M1 ⇒ M2 ⇒ · · · ⇒ Mn such that allMi have at least one marked right door. The
rank of a multicut as required in the Principal Lemma is determined by the following marking:

rankR + rankL

Thedegreeof a cut is defined to be the number of logical operators contained in the cut formula.

Proof of the Principal Lemma.By induction over the measure(degree, rank) of L, ordered lexico-
graphically.

In the case in whichrankR(M) = rankL(N) = 1, we proceed by a induction over the degree of the
cut. In this case, degree is reduced but rank increases, so illustrating the need for the lexicographical
ordering of(degree, rank).

If M or N is an axiom, the cut can be eliminated by Rule CUTAX. If M , say, ends with a weaken-
ing, then (because of its minimal right rank) it must be of the form

whereC is the only marked door. Therefore, the cut can be eliminated by Rule CUTW. Dually for the
case whereN ends with a weakening. Owing to their minimal ranks, neitherM norN can end with a
contraction. This leaves the case where bothM andN end with the introduction rule of a connective.
For reasons of rank, it must hold for bothM andN that the introduced formula is the only markedC.
In particular,M andN introduce the same connective. So the cut is a logical cut, and one of the rules
in Table 7 applies. That rule produces cuts of lower degree, and those can be eliminated, by induction.

Now for the case whererankR(M) + rankL(N) > 2, in which degree is fixed and we argue by
reduction of rank. Without loss of generality, suppose thatrankR(M) > 1. Because of its non-
minimal right rank,M cannot be an axiom. SupposeM ends with a contraction. If the door of
the contraction is not among the markedCs, then the contraction can be removed, and the cut can
be eliminated by induction hypothesis. Otherwise, we can remove the mark of the contraction’s
conclusion and mark the contraction’s hypotheses instead (“shrinkingM by expanding the multi-
contraction”). After that, the cut can be eliminated by induction hypothesis. Now suppose thatM
ends with a weakening. There are four sub-cases. (1) If neither of the weakening’s conclusions is
among the markedCs, then the weakening can be removed, and the cut can be eliminated by induction
hypothesis. (2) If both of the weakening’s conclusions are among the markedCs, then we can apply
Rule WC, which enables the induction hypothesis. Now suppose that exactly one of the weakening’s
conclusions is among the markedCs. (3) If that conclusion is the formula newly introduced by the
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weakening, thenM ’s side of the multicut, modulo coherence of contraction, looks as follows:

By Rule W-MOVE, this is equivalent to

Now we can apply Rule WC, which enables the induction hypothesis. (4) If the marked conclusion
of the weakening is the formula to which the weakening was introduced, we have the situation below:

Either M ′ has a doorB other than the twoCs, or N has a doorB other than its markedCs, for
otherwise the removal of the weakening would yield a proof of the empty sequent, in contradiction
to the system’s evident logical consistency. Owing to the re-wiring proposition, our rewrite rules
allow us to move the weakening toB. After that, the weakening can be removed, and the cut can be
eliminated by induction hypothesis.

What remains is the case whereM ends with a (right) introduction rule. BecauserankR(M) > 1,
that rule cannot be>R. We already covered the case⊥R, because it is a special form of weakening.
Now suppose the last rule ofM is¬R, resulting in a door¬A. If that door is not among the markedCs,
the negation-introduction can be removed, and the cut can be eliminated by the induction hypothesis.
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Otherwise, we have the situation below.

Using CUTC, we can transform this into the following netL′ (where for the sake of presentation, we
omit drawing the outer contractions joining the two copies ofN ):

The empire ofA (i.e., the net which is the multicut betweenM ′ and the left of the twoN ) satisfies
the induction hypothesis, so the multicut can be eliminated, resulting in some cut-free netM ′′. Thus,
we obtain a net

The key point now is that we can assume without of loss of generality that the right rank of this
multicut is1. For if this is not so, we can remove parts ofM ′′ until it becomes true (see Table 10).
Thus, the cut can eliminated by induction hypothesis.

The case whereM ends with∨R works in the same way.
Now for the case whereM ends with∧R. It is similar to the cases for¬R and∨R, except for some

minor complications: letA∧B be the conclusion of that final∧R. ThenM consists of a netMA with
A as a door and a netMB with B as a door, linked by the final∧R. There are two subcases. (1) The
conclusion of the final∧R is among the markedCs. (a) If bothMA andMB have a doorA∧B among
the markedCs, then two applications of CUTC (creating three copies ofN ) yield three multicuts; the
multicut involvingMA and the multicut involvingMB have smaller rank than the original multicut,
and can therefore be eliminated by induction hypothesis. For the remaining multicut, we can assume
without loss of generality that its left rank is1 (for reasons similar to the negation case explained
above). So the third cut too can be eliminated by induction hypothesis. (b) If only one ofMA and
MB have a doorA∧B among the markedCs, we need only one application of CUTC, but from then
on the argument is the same as for (a). (2) Suppose the conclusion of the final∧R is not among the
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markedCs. If only MA, say, has a doorA ∧ B among the markedCs, then the induction hypothesis
applies in a trivial way. If bothMA andMB have doors among the markedCs, then one application
of CUTC (creating two copies ofN ) yields two cuts to which the induction hypothesis applies, and
they can be eliminated independently. �

The cut-elimination theorem follows immediately from the Principal Lemma:

Theorem 3.5. Every net can be transformed into a cut-free one by using the rules in Tables 7, 8,
and 9.

4. NET THEORIES

Having studied cut-elimination, we are now ready to define the notions of equality and inequality
between proofs.

Linearly distributive categories provide the standard categorical semantics of the linear fragment
of the classical sequent calculus, and they admit all linear cut-reductions. They have nothing to say
(and do not need to say anything) about non-symmetric judgmentsM 4 N : either the morphisms
denoted by netsM andN are equal or not. The case where the denotations are equal corresponds
to our judgmentsM ≡ N . We want to keep this standard semantics of the linear fragment. The
local cut-reductions (Table 7) take place in the linear fragment, which we want to keep modeling by
linearly distributive structure. Therefore, we require these reductions to beinvertible—that is, we
require redex and reduct to be related via≡, which is4 ∩ <.

The non-local cut-reductions (Table 8) cannot be kept as equalities because they rule out interesting
models: in the introduction, we already mentioned Lafont’s example, which shows that requiring
CUTW to be invertible rules outall interesting models. The net-version of Lafont’s example looks as
follows:

4CUTW ≡WC

So if CUTW was invertible, thenM1 ≡ M2, and therefore all proofs ofA would be equivalent. One
could of course blame WC instead of CUTW, but this would be evidently contrived, because WC
is a coherence law whose absence would cause the structure to be an abomination. By contrast, we
shall see in§ 6 that dropping the invertibility of CUTW can be achieved by softening the naturality of
projections into a lax naturality, which is a well-established categorical concept.

The invertibility of CUTC also kills important models. While we have no evidence that it makes
any two proofs of a formulaA equivalent, we shall see in§ 6 that it rules out a desirable model: the
categoryRel of sets an relations. As we shall see, dropping the invertibility of CUTC can be achieved
by softening the naturality of diagonals into a lax naturality, wherebyRel becomes a model.
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In this section, we shall define a notion ofnet theorywhose judgments are inequalities of the form
M 4 N , whereM andN are nets (with matching sequences of doors). This notion of theory con-
sists essentially of the local cut-reductions (invertible), the non-local cut-reductions (not invertible),
the coherence laws presented in Table 9 (which we motivated by cut-elimination), and some more
coherence laws explained in this section.

A signature with negationΣ consists of a setAΣ of atomic formulæ and a setKΣ of constant nodes

with at least one door, where the formulæ in the doors are generated fromAΣ. Similarly, we define the
notion ofnet-signature, the only difference being that the formulæ in the doors must be negation-free.

Remark3. Constant nodes can cause logical inconsistency, like constants in theλ-calculus (e.g., a fix-
point constant of type(A → A) → A). Also, constant nodes can evidently obstruct cut-elimination.
But obviously, they are needed if nets are to serve as an “internal language” of the categories.

Constant nodes allow an important technical improvement: when we introduce constant nodes

then the figure for∧R in Table 5 can be seen as an abbreviation for

and dually for∨L. This anticipates the categorical semantics we shall present. (The benefits of using
these two constants were pointed out in [4], where they were used, under the namesmAB andwAB,
in the definition of “two-tensor polycategories”.) In fact, constant nodes can be used to replace all
unswitched rules (except CUT). In particular, we can replace¬L and¬R by constants

(However, we shall not introduce constants for WL and WR, because they bring no advantage.)

Remark4. There seems to be an analogy with the lambda-calculus: its higher-order nature allows to
add extra structure as constants (e.g., fix : (A → A) → A or case : (A + B) → (A → C) →
(B → C) → C). Analogously, the cut rule of the sequent calculus allows to add unswitched rules as
constants.

A net over a signatureΣ with negationis a graph generated from elements ofKΣ according to
Definition 4, except that the rules∨L, ∧R, ¬L, and¬R are replaced by the respective constant nodes.
Also, from here on, we assume a linear order on the left doors, and a linear order on the right doors.
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≡ AX∧

≡ AX∨

≡ AX¬

TABLE 11. Expansions of axioms

Definition 5. A net theoryT overΣ is a set of inequalitiesM 4 N whereM andN are nets overΣ
(with matching sequences of doors), with the following properties:

(1) The relation4 is reflexive, transitive, and compatible (i.e., all net-formation rules are “mono-
tonic” with respect to4);

(2) The rules in Tables 7–12 hold (whereM ≡ N meansM 4 N andN 4 M ).

The equality laws in Tables 11 and 12 are easy to justify: the axiom expansions in Table 11 are
widely used by logicians. In the category we shall construct from nets, they correspond to the laws
idA ⊗ idB = idA⊗B, idA ⊕ idB = idA⊕B, and(idA)∗ = idA∗ . The equation TWIST> is an evident
coherence law: it states that if we introduce a> on the left when there already is another>, we cannot
distinguish the two afterwards. Dually for TWIST⊥. The laws W∧ and C∧ state that the rules∧L,
WL, and CL interact in a coherent way. Dually for the laws W∨ and C∨. As we shall see in§ 6, the
laws in Table 12, together with those in Table 9, amount to requiring that the category hasmonoids
andco-monoids.

5. LINEAR NETS AND LINEARLY DISTRIBUTIVE CATEGORIES

In this section, we shall show that introducelinear-net theoriesare in perfect correspondence with
linearly distributive categories. Linear-net theories have neither structural rules nor negation, and the
only kind of judgment is of the formM ≡ N . Much of our analysis reconstructs that which is found
in [2] but does so for Robinson’s nets [21], which are directly based on the sequent calculus. It is
necessary for our subsequent development.

In § 5.1, we shall present the interpretation of linear-net theories in linearly distributive categories.
The ambiguity of the decomposition of proof nets (i.e., the fact that it cannot generally be determined
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≡ TWIST>

≡ TWIST⊥

≡ W∧

≡ W∨

≡ C∧

≡ C∨

TABLE 12. Remaining coherence laws for net theories
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which rule is the “last”) necessitates a proof that the inductively-defined interpretation is well-defined.
This corresponds to the fact that the very syntax of proof nets already encodes some equalities of
linearly distributive categories. We shall make this precise in Theorem 5.1.

In § 5.2, we shall show that every linear-net theory forms a linearly distributive category (Theo-
rem 5.4) which is an initial model (Theorem 5.8), and prove completeness (Theorem 5.7).

In § 5.3, we shall add negation and show that all previous results carry over without problems.
As explained in Remark 2, a correspondence between proof nets and linearly distributive cate-

gories has already been shown [2], but the nets we use, and our definition of equality between them,
differ from the ones in [2] because of our focus on cut-reduction. Therefore, we need to discuss this
correspondence in detail.

Definition 6. A linear net over a signatureΣ is a net overΣ without occurrences ofK¬L, K¬R, CL
and CR, such that WL occurs only withB = > (in which case we write>L instead of WL), and WR
occurs only withB = ⊥ (in which case we write⊥R instead of WL).

Definition 7. A linear-net theoryT over a signatureΣ is a set of equalitiesM ≡ N whereM and
N are linear nets overΣ (with matching sequences of doors), such that≡ is a congruence which
contains all instances of CUT∧, CUT∨, CUT>, CUT⊥, CUTAX, W-MOVE for C ∈ {⊥,>}, AX∧,
AX∨, TWIST>, and TWIST⊥.

So linear-net theories consist of equational judgmentsM ≡ N , in contrast to net-theories, which
consist of inequational judgmentsM 4 N . (However, the right conceptual view is that linear-net
theories have judgmentsM 4 N where4 happens to be symmetric.)

5.1. Categorical interpretation of linear nets. An interpretationof a linear-net theoryT in a lin-
early distributive categoryC sends a formulaA of T to an objectbAc of C according to the rules

bA ∧Bc = bAc ⊗ bBc b>c = 1 bA ∨Bc = bAc ⊕ bBc b⊥c = 0

(So an interpretation of formulæ is determined by the interpretation atomic formulæ.) As mentioned
earlier, the interpretation of nets cannot simply proceed by induction, because the ambiguity of de-
composition. We shall therefore start with an interpretation ofserializedlinear nets, which are nets
together with information that removes this ambiguity: whenever there are two or more potential
“last” rules, the extra information specifies the choice of one rule. After defining the interpretation,
we shall prove that it does not depend on the serialization (Theorem 5.1).

A serialized linear net with left doorsA1, . . . , An and right doorsB1, . . . , Bm is interpreted by a
morphism

bA1c ⊗ · · · ⊗ bAnc - bB1c ⊕ · · · ⊕ bBmc

where⊗ and⊕ are deemed to be, say, left associative, the nullary product is1, and the nullary sum is
0. The rule AX is interpreted by the identity. The rules∧L and>L are interpreted by pre-composing
the corresponding symmetric monoidal isomorphism associated with⊗. Dually,∨R and⊥R are in-
terpreted by post-composing the corresponding symmetric monoidal isomorphism associated with⊕.
The rule CUT is interpreted by the categorical operatorcut , which takes as arguments two morphisms
f : A - B ⊕ C andg : C ⊗D - E and is defined as follows:

cut(f, g) := A⊗D
f⊗id- (B ⊕ C)⊗D

δR
R- B ⊕ (C ⊗D)

B⊕g- B ⊕ E
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Specifically, the interpretation of the net

is given as follows:

A1 ⊗ · · · ⊗Ai
bMc- B1 ⊕ · · · ⊕Bj ⊕ C

sm⊕
A1 ⊗ · · · ⊗Ai

- (B1 ⊕ · · · ⊕Bj)⊕ C

C ⊗Ai+1 ⊗ · · · ⊗An
bNc- Bj+1 ⊕ · · · ⊕Bm

sm⊗
C ⊗ (Ai+1 ⊗ · · · ⊗An) - Bj+1 ⊕ · · · ⊕Bm

cut
(A1 ⊗ · · · ⊗Ai)⊗ (Ai+1 ⊗ · · · ⊗An) - (B1 ⊕ · · · ⊕Bj)⊕ (Bj+1 ⊕ · · · ⊕Bm)

sm⊗,sm⊕
Aσ(1) ⊗ · · · ⊗Aσ(n)

- Bτ(1) ⊕ · · · ⊕Bτ(m)

where sm⊗ stands for pre-composing symmetric monoidal isomorphisms associated with⊗, sm⊕
stands for post-composing symmetric monoidal isomorphisms associated with⊕, andσ andτ are the
permutations corresponding to the order of the new net’s doors. The constant nodesK∧R andK∨L

are interpreted byidbAc⊗bBc andidbAc⊕bBc, respectively.
Evidently, an interpretation of serialized linear nets is determined by the interpretation of thenon-

logical constant nodes(i.e., those which are notK∨L or K∧R).

Theorem 5.1. For every interpretationb−c of sequentialized linear nets, it holds thatbM ′c = bM ′′c
wheneverM ′ andM ′′ are serializations of the same linear netM .

Proof. Let C be a linearly distributive category, letΣ be a signature, and letb−c be an interpretation
of the serialized linear nets overΣ in C. For every linear netM , we have thesetof morphisms

S(M) = {
⌊
M ′⌋ : M ′ is a serialization ofM}

We prove that, for allM , the setS(M) has only one element. The proof proceeds by induction
over the size ofM . The base cases (AX, ⊥L, >R, and constant nodes) are trivial: there is only one
serialization ofM . Now for the induction step. For every final ruler of M , define

Sr(M) := {
⌊
M ′⌋ : M ′ is a serialization ofM whose last rule isr}

Obviously,S(M) is the union of all theSr(M) (wherer ranges over the final rules ofM ). By the
induction hypothesis, all serializations ofM minusr have the same interpretation. Therefore, every
Sr(M) is a singleton set. So it suffices to prove that for every two final rulesr ands, the setsSr(M)
andSs(M) are equal. We proceed by a case split on(r, s).

Case 1: To warm up, consider the caser is of type∧L ands is of type∨R. ThenM must have
the form



30 CARSTEN F̈UHRMANN, DAVID PYM

Let g be the morphism which is (by induction hypothesis) the only element ofS(N). Define
netsNr andNs as follows:

Nr := Ns :=

Let gr (resp.gs) be the morphism which is (by induction hypothesis) the only element of
S(Nr) (resp.S(Ns)). By our definition of interpretation, we havegr = g ◦ ir, whereir
is the symmetric monoidal isomorphism associated with⊗ that “puts the brackets around
bAc⊗bBc”. Dually, gs = is ◦g, whereis is the symmetric monoidal isomorphism associated
with ⊕ that “puts the brackets aroundbCc ⊕ bDc”. Now let Mr be a serialization ofM with
last ruler. Let fr be the morphism which is the interpretation ofMr. By definition of our
notion of interpretation, we havefr = gs ◦ ir = (is ◦ g) ◦ ir. Dually, letMs be a serialization
of M with last rules, and letfs be the morphism which is the interpretation ofMs. We have
fs = is ◦ gr = is ◦ (g ◦ ir). By associativity of◦, we havefr = fs. SoSr(M) = Ss(M).

This case forr = ∧L ands = ∨R has a straightforward generalization to the case where
r ∈ {∧L,>L} ands ∈ {∨R,⊥R}, because all that matters is thatr is interpreted by pre-
composing a morphism, ands is interpreted by post-composing a morphism. The categorical
law which is finally used is the associativity of◦.

Case 2: r, s ∈ {∧L,>L}. In this case, we end up in a situation wherefr = g ◦ is ◦ ir and
fs = g ◦ jr ◦ js whereir, is, js, andjr are symmetric monoidal isomorphisms associated
with ⊗, andg is the interpretation of some subnetN . We getfr = fs because, by symmetric
monoidal coherence,ir ◦ is = js ◦ jr. Dually for the caser, s ∈ {∨R,⊥R}.

Case 3: r ∈ {∧L,>L,∨R,⊥R} and s = CUT. (All that matters aboutr here is that it is
interpreted by pre- or post-composing a morphism.) Without loss of generality, letr = ∧L.
The situation is as follows:

We getfr = fs because pre-composition of a morphism commutes with the categorical oper-
atorcut , as can be easily checked.

Case 4: r, s = CUT. Then we have
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The two possible cases,X = Y andX 6= Y , correspond to two laws ofpolycategorieswhich
are well-known to hold in a linearly distributive category (Laws 3 and 4 in Definition 1.1
in [4].)

�

Now we turn towards the soundness proof. It relies heavily on the following lemma, which is the
semantic counterpart of CUTAX.

Lemma 5.2. The equation below holds in every linearly distributive category.

U
f- V ⊕A A⊗ 1

ρ⊗- A
cut

U ⊗ 1 - V ⊕A
= U ⊗ 1

ρ⊗- U
f- V ⊕A

Proposition 5.3(Soundness). Letb−c be an interpretation of linear nets over some signatureΣ. Then
the judgmentsM ≡ N such thatbMc = bNc form a linear-net theory.

Proof. First we prove the soundness of CUTAX. Without loss of generality, suppose thatX = R. If
the domain and codomain ofbMc areU andW , respectively, then the interpretation of

is

U
bMc- W

sm⊕
U - V ⊕ bAc

bAc id- bAc
sm⊗

bAc ⊗ 1 - bAc
cut

U ⊗ 1 - V ⊕ bAc
sm⊗, sm⊕

U - W

By Lemma 5.2 and symmetric monoidal coherence, this is equal tobMc.
Now for the soundness of CUT∨. Because∨L is expressed in terms of the constantK∧L (as

explained in Section 4), it suffices to show that the interpretation of

(13)

is equal tobLc. If the domain and codomain ofbLc areU andW , respectively, then the interpretation
of Net 13 is

U
bLc- W

sm⊕
U - V ⊕ (bAc ⊕ bBc)

bAc ⊕ bBc id- bAc ⊕ bBc
sm⊗

(bAc ⊕ bBc)⊗ 1
id- bAc ⊕ bBc

cut
U ⊗ 1 - V ⊕ (bAc ⊕ bBc)

sm⊕, sm⊗
U - W

By Lemma 5.2 and symmetric monoidal coherence, this is equal tobLc. Dually for CUT∧.
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The soundness of CUT⊥ also follows from Lemma 5.2, by a straightforward argument, and dually
for CUT>.

The soundness of W-MOVE (for C ∈ {⊥,>}) follows immediately from symmetric monoidal
coherence.

Proving the soundness of AX∧ boils down (by using CUTAX) to showing that the interpretation of

is idbA∧Bc. This follows directly from symmetric monoidal coherence. Dually for AX∨.
The soundness of TWIST> and TWIST⊥ follows immediately from symmetric monoidal coher-

ence. �

5.2. Completeness of linear-net theories.

Theorem 5.4. Every linear-net theoryT forms a linearly distributive categoryCT .

Proof. The objects of the linearly distributive categoryCT are the formulæ ofT . A morphism
A - B is a proof net with a doorA : L, a doorB : R, and no other doors. The categorical
operators are defined in to Table 13. (The missing ones are given by duality and symmetry.) The
associativity of composition is trivial and requires no equational law. The neutrality of the identity
is stated by the law CUTAX. That the functor⊗ preserves composition is stated by CUT∧, and that
it preserves identities is stated by AX∧. Now for symmetric monoidal coherence. Thatσ⊗ is self-
inverse follows from cuttingσA,B

⊗ againstσB,A
⊗ , followed by an application of CUT∧ and a reverse

application of AX∧. The same technique shows thatα⊗ is an isomorphism. The inverse ofρ⊗ is the
net below. Thatρ⊗ ◦ ρ−1

⊗ = id follows from cuttingρ⊗ andρ−1
⊗ with cut formulaA∧>, followed by

an application of CUT∧, then CUTAX, then CUT>.

Proving thatρ−1
⊗ ◦ ρ⊗ = id is tricky; this confirms the old wisdom that units are often the most

difficult aspects of the equational theory of sequent calculus (seee.g., [2]). Cuttingρ−1
⊗ andρ⊗ with

cut formulaA and applying CUTAX yields the net
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(N : B - C) ◦ (M : A - B) =

idA =

(M : A - A′)⊗ (N : B - B′) =

α⊗ =

ρ⊗ =

σ⊗ =

δL
L =

TABLE 13. The linearly distributive category of linear nets

Another application of CUTAX yields



34 CARSTEN F̈UHRMANN, DAVID PYM

Applying W-MOVE yields

Now, literally and metaphorically, the twist: applying C-TWIST yields

The point is that the left of the two occurrences of> : L is now the one which is “introduced by the
weakening”. Applying CUT> yields

This net is the identity by AX∧.
The naturality ofα⊗ andσ⊗ is straightforward and relies only on CUT∧ and CUTAX. The natural-

ity of ρ⊗ follows from CUT∧, CUTAX, and W-MOVE; we leave the details to the reader. Checking
symmetric monoidal coherence (Diagrams 1–6) is also straightforward. So⊗ forms a symmetric
monoidal product. Dually for⊕.

Now for the coherence laws involving the distributivity. To see that Diagram 7 commutes, note that
(λ⊗ ⊕ id) ◦ δL

L, after applying CUT∨, CUT∧, and CUTAX, is equivalent to
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By re-wiring and AX∧, this is equivalent to

which isλ⊗ by definition.
Diagrams 7, 8, 9, and 10 follow from straightforward calculations using CUT∨, CUT∧, and CUTAX.

�

Now we turn towards completeness and initiality. Both results rely on the following lemma.

Lemma 5.5. Let T be a linear-net theory, letM be a net ofT with left doorsA1, . . . , An and right
doorsB1, . . . , Bm, and letCT bMc be the interpretation ofM in CT . If n > 0 andm > 0, then
CT bMc is the equivalence class (w.r.t. equality≡ in T ) of

(14)

where the left “rule” ending inA1 ∧ . . . ∧ An stands forn− 1 applications of the rule∧L, the right
“rule” ending with B1 ∨ . . . ∨ Bm stands form − 1 applications of∨R. If m = 0 (and therefore
n > 0), bMc is the equivalence class of

(15)

and dually for the casen = 0.

Proof. By laborious induction over the size ofM . �

Proposition 5.6. In every linear-net theoryT , for any two netsM andN with matching sequences
of doors, it holds that

M ≡ N in T if and only if CT bMc = CT bNc
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Proof. By Lemma 5.5, we haveCT bMc = CT bNc if and only if M ′ ≡ N ′ in T , whereM ′ is the
net in Picture 14 or 15 in Lemma 5.5, and similarly forN ′. As can be easily checked, this holds if and
only if M ≡ N in T . �

Now completeness follows immediately:

Theorem 5.7 (Completeness). Let T be a linear-net theory, and letM and N be nets ofT with
matching sequences of doors. If the equationM ≡ N holds in every model ofT , then it is inT .

Theorem 5.8(Initiality) . For every modelC b−c : T - C of a linear-net theoryT , there is a
unique functorF : CT - C that preserves all linearly distributive structure on the nose and
makes the diagram below commute.

CT
F

- C

�
�

�

C b−c
�

T

CT b−c
6

Proof. BecauseCT is bijective on objects, the object part ofF is uniquely specified. Furthermore,
every morphism ofCT is in the image ofCT b−c: for if the morphism is the equivalence class of a
netM (which by construction ofCT has only on left door and one right door), then by Lemma 5.5 it is
equal toCT bMc. Because of this surjectivity ofCT b−c, F is also uniquely specified on morphisms.
ForF to be well-defined, we need thatM ≡ N in T impliesCT bMc = CT bNc, but this is just the
statement thatC b−c is a model. It remains to show thatF preserves all structure on the nose. This is
a routine calculation inC. �

5.3. Adding negation.

Definition 8. A linear net with negation over a signatureΣ with negationis a net overΣ without
occurrences CL and CR, such that WL occurs only withB = >, and WR occurs only withB = ⊥.

Definition 9. A linear-net theory with negationT over a signatureΣ with negation is a set of equalities
M ≡ N whereM andN are linear nets with negation overΣ (with matching sequences of doors),
such that≡ is a congruence which contains all instances of CUT∧, CUT∨, CUT>, CUT⊥, CUTAX,
CUT¬, W-MOVE for C ∈ {⊥,>}, AX∧, AX∨, AX¬, TWIST>, and TWIST⊥.

An interpretation of a linear-net theory with negationin a linearly distributive category with nega-
tion is defined like an interpretation in the absence of negation, plus the following two requirements:
first, negation of formulæ is interpreted according to the rule

b¬Ac = bAc∗

Second,K¬L is interpreted by the mapγL : bAc∗ ⊗ bAc - 0. Dually, K¬R is interpreted by the
mapτR : 1 - bAc ⊕ bAc∗. The following two lemmas are the key to soundness:

Lemma 5.9. The equation below holds in every linearly distributive category with negation.

1 - A⊕A∗ A∗ ⊗A - 0
cut

1⊗A - A⊕ 0
sm⊗, sm⊕

A - A

= idA

Proof. After expressing the categorical operatorcut in terms of the linear distributivity, the claim
follows from Diagram 11 in the definition of a linearly distributive category with negation. �
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Lemma 5.10. The equation below holds in every linearly distributive category with negation.

1 - A⊕A∗ ∼= A∗ ⊕A A⊗A∗ ∼= A∗ ⊗A - 0
cut

1⊗A∗ - A∗ ⊕ 0
sm⊗, sm⊕

A∗ - A∗

= idA∗

Proof. After expressing the categorical operatorcut in terms of the linear distributivity, the claim
follows from Diagram 12 in the definition of a linear distributive category with negation. �

Proposition 5.11(Soundness). Let b−c be an interpretation of linear nets with negation over some
signatureΣ with negation. Then the judgmentsM ≡ N such thatbMc = bNc form a linear-net
theory with negation.

Proof. Proving the soundness of CUT¬ boils down (by using CUTAX) to showing that the interpreta-
tion of

is idbAc. This follows directly from Lemma 5.9.
Proving the soundness of AX¬ boils down (by using CUTAX) to showing that the interpretation of

is idbA∗c. This follows from Lemma 5.10. �

Theorem 5.12.Every linear-net theory with negation forms a linearly distributive category with nega-
tion.

Proof. We start with the categoryCT from Theorem 5.4 and define

τR = γL =
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To check Diagram 11, we show thatλ⊕ ◦ (γR⊕ id) ◦ δL
L ◦ (id ⊗ τL) ◦ρ−1

⊗ = id . To see this, note that

(id ⊗ τL) ◦ ρ−1
⊗ = λ⊕ ◦ (γL ⊕ id) =

which follows from CUTAX, CUT∧, CUT> in case of the left equation, and from CUTAX, CUT∨,
CUT⊥ in case of the right equation. Connecting these two nets withδL

L and simplifying with CUT∨,
CUT∧, and CUTAX yields

By CUT¬ and CUTAX, this is equivalent toidA.
Diagram 12 is checked in a similar way, except that (crucially!) the last step uses AX¬ instead of

CUT¬. �

Lemma 5.5 carries over without problems to the situation with negation. Thus, completeness and
initiality can be proved as in the negation-free case.

6. SEMANTICS OF WEAKENING AND CONTRACTION

The näıve semantics of weakening and contraction is evident: require the linearly distributive cat-
egory with negation to have finite products and coproducts, and extend the notion of interpretation as
follows: the net below, where we assume that the doorA : L is betweenAk andAk+1,

is interpreted by

bA1c ⊗ · · · ⊗ bAkc ⊗ bAc ⊗ bAk+1c ⊗ · · · ⊗ bAnc
∼= (bA1c ⊗ · · · ⊗ bAnc)⊗ bAc id⊗∆- (bA1c ⊗ · · · ⊗ bAnc)⊗ (bAc ⊗ bAc)
∼= bA1c ⊗ · · · bAic ⊗ bAc ⊗ bAi+1c ⊗ · · · ⊗ bAjc ⊗ bAc ⊗ bAj+1c ⊗ · · · ⊗ bAnc
bMc- bB1c ⊕ · · · ⊕ bBmc
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where∆ is the diagonal associated with the finite products. The rule WL is interpreted similarly,
except that the morphism which is pre-composed tobMc is built by using the projectionbAc - 1
instead of∆. Dually for CR and WR.

But net-theories are not complete for models with finite products and coproducts: for example, the
terminal object would necessitate the law

≡(16)

which in categorical form is〈〉 ◦ f = 〈〉. Owing to CUTW, all net-theories have the left-to right
reduction4. But to escape the collapse cause by Lafont’s example, we had to drop the converse<.
Similarly, finite products would necessitate the law

≡(17)

which in categorical form is essentially∆ ◦ f = (f ⊗ f) ◦∆. Because of CUTC, all net-theories have
the left-to right reduction4. But the converse< does not generally hold. (As we shall see,Rel is a
counter-model.)

Therefore, we shall weaken the requirements imposed on diagonals, projections, co-diagonals, and
co-projections. We shall proceed as follows:

Section 6.1: To each objectA, we add a monoid structure with multiplication∇ : A⊕A - A
and unit[] : 0 - A. Dually, we add a co-monoid structure with co-multiplication∆ :
A - A ⊗ A and co-unitA - 1. This structure is enough to interpret weakening and
contraction;

Section 6.2: However, we shall see that this structure does not generally admit CUTW and
CUTC. To address this issue, we shall introduce an order-enrichment, together with some
conditions about the interaction between the monoids, the co-monoids, and the order. We call
the resulting structuresclassical categories. Finally, we shall prove soundness, completeness,
and initiality of classical categories with respect to the classical sequent calculus.

In particular, we shall see that:

(1) There is a remarkably close correspondence between the coherence laws for nets in Tables 9
and 12 and the equational laws for the monoids and co-monoids. This will become evident in
the proof of Theorem 6.2;

(2) The proof of soundness (Theorem 6.4) is unusually informative: it reveals that both CUTW
and CUTC combine two very different categorical manipulations in one step.

6.1. Monoids and co-monoids.In this section, we shall define what it means for a linearly distribu-
tive category tohave monoids and co-monoids, and show that the linearly distributive category built
from a net theory has such structure.
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First we recall what it means for a symmetric monoidal category tohave monoids1.

Definition 10. Let C = (C,⊕, 0) be a symmetric monoidal category. Asymmetric monoidin C
is given by an objectA, together with two morphisms∇A : A ⊕ A - A and []A : 0 - A,
satisfying the usual equations

(A⊕A)⊕A
∇⊕ id

- A⊕A
HHHH

∇
j

A

����

∇
*

A⊕ (A⊕A)

α⊕

?

id ⊕∇
- A⊕A

(18)

A⊕ 0
id ⊕ []

- A⊕A �
[]⊕ id

0⊕A

@
@

@ρ−1
⊕ R 	�

�
�

λ−1
⊕

A

∇
?

(19)

A⊕A
HHHH

∇
j

A

����

∇
*

A⊕A

σ⊕

?

(20)

C has monoidsif there is a chosen symmetric monoid(A,∇A, []A) for every objectA, compatible
with the symmetric monoidal structure in the following sense:

A⊕B ⊕A⊕BPPPPPPP
∇A⊕B

q
A⊕B

�������

∇A ⊕∇B

1

A⊕A⊕B ⊕B

id ⊕ σ⊕ ⊕ id

?

(21)

0 XXXXXXXXXX
[]A⊕B

z
A⊕B

����������

[]A ⊕ []B

:

0⊕ 0

λ⊕ = ρ⊕

?

(22)

[]0 = id0 : 0 - 0(23)

(In the last diagram, some obvious associativity isomorphisms have been omitted.)
Note that Equations 21 and 22 simply state that the monoidal operations at compound carriers

A ⊕ B are definedpointwisein terms of the operations of the carriersA andB. Equation 23 can be

1This definition is taken from from [22], except that Selinger’s paper deals with the more general case ofpremonoidal
categories and uses the terminology “has co-diagonals” instead of “has monoids”.
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seen as the nullary case of Equation 22. The nullary case of Equation 21,∇0 = λ⊕, is easily seen to
be derivable.

Note also that we do not require the families of maps∇A and []A to be natural inA. In other
words, we do not require all maps ofC to be monoid-homomorphisms. Instead, we call a morphism
f : A - B copyableif the diagram

A⊕A - A

B ⊕B

f ⊕ f
?

- B

f
?

commutes, anddiscardableif the diagram

0 - A

0

[]
?

- B

f
?

commutes. This terminology was introduced by [23] and also used in [22, 8, 13]. (However, those
publications deal with the semantics of functional programming languages and natural-deduction cal-
culi, and thepremonoidalcategories they use differ significantly from linearly distributive categories.)
The mapf : A - B is calledfocal if it is both copyable and discardable.

Note that to say thatf is copyable is to say thatf preserves the monoidal multiplication∇—that
is, f is a homomorphism of semigroups. To say thatf is discardable is to say thatf preserves the
monoidal unit[]. To say thatf is focal is to say thatf is a homomorphism of monoids.

Thefocusof C is defined to be the lluf2 subcategory of focal maps.
Dually, we define what it means for a symmetric monoidal categoryC = (C,⊗, 1) to have co-

monoids, and the notionsco-copyable, co-discardable, co-focal, andco-focus. (Caution: the notions
“copyable”, “discardable”, and “focal”, in [23, 8, 13] correspond to our notions “co-copyable”, “co-
discardable”, and “co-focal”. However, our terminology agrees with [22].)

As observed in [22], the focus of a symmetric monoidal category with monoids is closed under⊕
and contains all structural maps (α⊕, λ⊕, ρ⊕, σ⊕,∇, and[]), as well as the co-projections

ι1 : A
ρ−1
⊕- A⊕ 0

id⊕[]- A⊕B

ι2 : A
λ−1
⊕- 0⊕A

[]⊕id- A⊕B

Furthermore, the focus has a canonical finite coproduct structure:

Lemma 6.1. In the focus, the object0 is initial, and⊕ is a coproduct with injectionsι1 and ι2 and
co-pairing

[f, g] = A⊕B
f⊕g- C ⊕ C

∇- C

In fact, the focus is the largest subcategory on which⊕ restricts to a coproduct.

Example1. The categoryRel, whose objects are sets, and whose morphismsA - B are subsets
of the set-theoretic productA × B. The functors⊗ and⊕ coincide: the setsA ⊗ B andA ⊕ B are
simplyA×B. The units1 and0 are the singleton set{∗}. Givenf : A - B andf ′ : A′ - B′,
the morphismf ⊗ f ′ = f ⊕ f ′ : A⊗A′ - B ⊗B′ is defined to be

{((x, x′), (y, y′)) : (x, y) ∈ f ∧ (x′, y′) ∈ f ′}

2A subcategory ofC is calledlluf if it has all objects ofC.
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The setA∗ is simplyA. The law1 - A⊕A∗ of the excluded middle is{(∗, (x, x)) : x ∈ A}, and
dually for the contradiction lawA∗ ⊗A - 0. The monoidal and co-monoidal operations are

∇A = {((x, x), x) : x ∈ A} []A = {(∗, x) : x ∈ A}
∆A = {(x, (x, x)) : x ∈ A} 〈〉A = {(x, ∗) : x ∈ A}

Example2. Every Boolean latticeB. The objects are the elements ofB, and a morphismA - B
is a pair(A,B) such thatA ≤ B. Composition and identities are trivial. The functor⊗ is given by
the infimum operator∧, and⊕ by the supremum operator∨. The object1 is the greatest element>,
and0 is the smallest element⊥. The linear distributivity is the lawA∧ (B∨C) ≤ (A∧B)∨C which
holds in every Boolean lattice. The operator(−)∗ is the complement operator ofB. The monoidal
multiplication∇A is the idempotency lawA∨A = A, and the monoidal unit is the inequality⊥ ≤ A.
Dually for the co-monoidal structure.

Obviously, given two linearly distributive categoriesC andC′ with negation, monoids, and co-
monoids, the product categoryC×C′ has again such structure. In particular, we have

Example3. Rel×B for every Boolean latticeB. In such a category, we have⊕ 6= ⊗ (other than in
Rel), and there are hom-spaces with more that one element (other than inB).

Theorem 6.2. For every net theoryT , the linearly distributive categoryCT has monoids and co-
monoids.

The proof of this theorem highlights the close correspondence between the equational laws for the
monoids and co-monoids and the coherence laws for nets in Tables 9 and 12.

Proof of Theorem 6.2.We start with the linearly distributive category from Theorem 5.4. We prove
thatC has monoids (the existence of co-monoids follows by duality). Define

∇ := [] :=

To see that Diagram 18 commutes, note that both nets, after simplification with CUT∨ and CUTAX,
are the same up to C-ASSOC. Diagram 20 commutes because both nets, after CUT∨ and CUTAX, are
the same up to C-TWIST. Diagram 21 commutes because both nets, after CUT∨ and CUTAX, are the
same up to C∨. To see that Diagram 19 commutes, note that the net∇ ◦ ([] ⊕ id), after CUT∨ and
CUTAX, is
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Re-wiring yields

which is equal toρ−1
⊕ by WC. To see that Diagram 22 commutes, note that the net([]A ⊕ []B) ◦ λ⊕,

after CUT∨, is

Re-wiring yields

After CUT⊥ and CUTAX, this is
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which is equal to[]A⊕B by W∨. To see that[]0 = id0, note that[]0 is equal to

by CUTAX. By re-wiring, this is equivalent to

But the⊥ : R to which the cut is connected is not the one introduced by the weakening! However, by
Rule TWIST⊥, we get

By Rule CUT>, this is equivalent toid1. �

6.2. The order enrichment. Linearly distributive categories with negation, monoids, and co-monoids
provide interpretations of net theories. However, they are not good enough to count as models be-
cause they may fail to admit CUTC or CUTW. To see how CUTC may fail to be a semantic equality,
note that in any net theoryT we have (where∆B denotes the evident net corresponding to the co-
multiplicationB - B⊗B, and, recalling that0 in Rel is the singleton set,[]B denotes the evident
net corresponding to the unit0 - B)

∆B ◦ []B 4CUTC ([]B ⊗ []B) ◦∆⊥

modulo the equivalences CUT∧, CUT∨, and CUTAX. (This is the left-to-right reduction in Equa-
tion 17 withM = []B.) But, inRel, the interpretation of the redex turns out to be{(∗, (x, x)) : x ∈
B}, whereas the interpretation of the reduct turns out to be{(∗, (x, y)) : x, y ∈ B}.

To see how CUTW may fail to be a semantic equality, suppose that every interpretation admits
CUTW. Then the reductions in Lafont’s example would be interpreted by equalities, and therefore
any two nets with only doorA : R would have the same interpretation. But inRel, as explained
above, we have∆B ◦ []B 6= ([]B ⊗ []B) ◦ ∆⊥, for non-trivial B, and thus we have two different
morphisms0 - B ⊗B, both of which are denotable by nets.

To model CUTC and CUTW adequately, we introduce an order-enrichment. Byordered category,
we mean a category together with a partial order on every hom-space, such that the composition of
morphisms is monotonic. (In the jargon of enriched category theory, a “po-enriched category”, where
po stands for the category of partial orders and monotonic functions.)

Definition 11. A classical categoryis an ordered linearly distributive categoryC with negation,
monoids, and co-monoids, such that⊗, ⊕, and the negation functor are monotonic in all arguments,
and the following inequalities hold (wheref ranges over arbitrary morphisms ofC):
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∆LAX

A
∆- A⊗A

≤

C

f
?

∆
- C ⊗ C

f ⊗ f
?

A �∇
A⊕A

≤

C

f
6

�
∇

C ⊕ C

f ⊕ f
6

∇LAX

〈〉LAX

A
〈〉 - 1

≤

C

f
?

〈〉
- 1

id
?

A � []
0

≤

C

f
6

�
[]

0

id
6

[]LAX

∆∇

A⊕ C
∆- (A⊕ C)⊗ (A⊕ C)

A⊕ (C ⊗ (A⊕ C))

δR
R

?

≤

A⊕ (A⊕ (C ⊗ C))

id ⊕ δL
R

?

A⊕ (C ⊗ C)

id ⊕∆

?
�
∇⊕ id

(A⊕A)⊕ (C ⊗ C)

α⊕
?

A⊗ C � ∇
(A⊗ C)⊕ (A⊗ C)

A⊗ (C ⊕ (A⊗ C)))

δL
L

6

≤

A⊗ (A⊗ (C ⊕ C))

id ⊗ δL
R

6

A⊗ (C ⊕ C)

id ⊗∇

6

∆⊗ id
- (A⊗A)⊗ (C ⊕ C)

α⊗
6

∇∆

〈〉[]

A⊕ C
〈〉 - 1

≤

A⊕ 1

id ⊕ 〈〉
?

�
[]⊕ id

0⊕ 1

λ⊕
?

A⊗ C � []
0

≤

A⊗ 0

id ⊗ []
6

〈〉 ⊗ id
- 1⊗ 0

λ⊗
6

〈〉[]

Example4. Rel, where the order between morphism is the set-theoretic inclusion of morphisms.
Also, every Boolean lattice, where the order between morphisms is trivial (because hom-spaces have
at most one element).

Obviously, given two classical categoriesC andC′ the product categoryC×C′, which we already
observed to be a linearly distributive category with monoids, co-monoids and negation, is again the
classical category with

(f, f ′) ≤ (g, g′) ⇐⇒ f ≤ g andf ′ ≤ g′

In particular, we have

Example5. Rel×B is a classical category for every Boolean latticeB.

A more substantial model, based on the Geometry of Interaction, is presented in [7]. (The details
are beyond the scope of the present paper.)

The use of the eight inequality laws will be explained precisely in the soundness and completeness
proofs. However, we shall first explain these laws in a more intuitive way. The law∆LAX , which
states that∆ is a “lax natural transformation”, is essentially the left-to-right reduction in Equation 17.
(As observed earlier, the converse< does not generally hold.) This reduction is possible owing to
CUTC. But CUTC is more powerful, in a subtle way: note that the netM in Equation 17 has only
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one right door,B, which is the cut formula. However, the rule CUTC allowsM to have further right
doors which are not used in the cut, for example

4

The key point is that the right doorC is copied, and we must undo this with aright contraction. This
compensation has nothing to do with the law∆LAX . It is captured by the law∆∇, which states that
“copying too much and then compensating by co-copying may increase the denotation”.

Similarly, the law〈〉LAX , which states that〈〉 is a lax natural transformation, is essentially the
left-to-right reduction in Equation 16. This reduction is possible owing to CUTW, but CUTW is more
powerful. Consider the following instance of CUTC:

4

Here the key point is that the right doorC is discarded, and we must compensate for this with aright
weakening. This compensation has nothing to do with the law〈〉LAX . It is captured by the law〈〉[],
which states that “discarding too much and then compensating by co-discarding may increase the
denotation”.

Theorem 6.3. Every net theory forms a classical category.

Proof. Let T be a net theory. By Theorem 6.2, we know thatCT is a linearly distributive category
with negation, monoids, and co-monoids. Diagram∆LAX is, modulo CUT∧ and CUTAX, and in-
stance of CUTC. Dually for Diagram∇LAX . Diagram〈〉LAX is, modulo CUTAX and〈〉1 ≡ id1, an
instance of CUTW. Dually for Diagram[]LAX .
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Now for Diagram∆∇. We have

id ⊕∆ =

≡ CUTAX

4 CUTC (the bold subnet got copied)

≡ (∇⊕ id) ◦ α⊕ ◦ (id ⊕ δ) ◦ δ ◦∆ CUT∧, CUT∨, CUTAX, C-TWIST

The key point is that CUTC introduces the “compensating contraction” for the rightA. Dually for
Diagram∇∆.
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Finally, we show Diagram〈〉[]. We have

id ⊕ 〈〉 =

≡ CUTAX

4 CUTW (the bold subnet got discarded)

≡ CUT⊥

≡ re-wiring

≡ ([]⊕ id) ◦ λ⊕ ◦ 〈〉 CUT∨, CUTAX
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The key point is that CUTW destroys the axiom link between the leftA and the rightA and introduces
“compensating weakening” instead. Dually for Diagram[]〈〉. �

Now we finally get to the first main theorem:

Theorem 6.4(Ordered soundness). For every classical-category interpretationb−c of nets over a
signatureΣ, the judgmentsM 4 N such thatbMc ≤ bNc form a net theory.

The proof of this theorem obviates the necessity of all eight inequalities in the definition of a
classical category.

Proof. Because we already have soundness for linear-net theories with negation (Proposition 5.11),
and because we have the monotonicity of⊗,⊕, and negation, which implies that4 is compatible (in
the sense of Definition 5), it remains to prove the soundness of the inequalities CUTW and CUTC, and
the equalities C-ASSOC, C-CROSS, C-TWIST, WC, W-MOVE, W∧, W∨, C∧, and C∨. For each of
the equalities, the two sides correspond to different ways of pre-composing projections and diagonals,
or different ways of post-composing co-projections and co-diagonals. But it is evident that, for each
equality, these two ways are semantically the same, because of the finite products on the focus and the
finite coproducts on the focus (Lemma 6.1).

Now for the soundness of CUTW. Without loss of generality, letZ = L in the presentation of
CUTW in Table 8. It is easy to see that the soundness follows from the law

A
f- A′ ⊕ C C ⊗B

π2- B
g- B′

cut
A⊗B - A′ ⊕B′

≤ A⊗B
π2- B

g- B′ ι2- A′ ⊕B′(24)

To see the that Inequality 24 holds, consider the following diagram:

A⊗B
π2 - B

g
- B′

@
@

@
@

@

〈〉 ⊗ id

R

=

������������

λ⊗

*

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

π2

�

≤ 1⊗B

�
�
�
�
�
�
�
�
�
�
�
�

〈〉 ⊗ id

�

= =

≤

(A′ ⊕ C)⊗B

f ⊗ id

?

δR
R

- A′ ⊕ (C ⊗B)
id ⊕ π2

- A′ ⊕B

ι2

?

id ⊕ g
- A′ ⊕B′

ι2

?

The lower-left leg is the left side of Inequality 24 (by definition of the categorical operatorcut). The
inequality in the leftmost triangle holds because of Condition〈〉LAX in the definition of a classical
category. The two equalities in the triangles hold by definition ofπ2. The equality in the square holds
by naturality ofι2. So it remains to prove the inequality in the rightmost triangle. To see this, consider
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the diagram below.

(A′ ⊕ C)⊗B
π2 - B

A
A
A
A
A
A
A
A
A

(id ⊕ 〈〉)⊗ id
A
A
A
A
A
A
A
A
AU

PPPPPPPPPPPPPPPPPPP

〈〉 ⊗ id

q �������������������

λ⊗

1

�
























λ⊕
≤ 1⊗B

+�
�

�
�

�
�

�
�

�

λ⊕ ⊗ id

(0⊕ 1)⊗B
δ

- 0⊕ (1⊗B)

λ⊕

? id ⊕ λ⊗ - 0⊕B

J
J
J
J
J
J
J
J
J
J
J
J

[]⊕ id

^

(A′ ⊕ 1)⊗B

([]⊕ id)⊗ id

? δR
R- A′ ⊕ (1⊗B)

[]⊕ (id ⊗ id)

?

�������������������

id ⊕ (〈〉 ⊗ id)

1 PPPPPPPPPPPPPPPPPPP

id ⊕ λ⊗

q
A′ ⊕ (C ⊗B)

δR
R

?

id ⊗ π2

- A′ ⊕B

ι2

?

The square containing the inequality follows from Condition〈〉[] in the definition of a classical cate-
gory. All other parts of the diagram commute: the top and bottom triangle by definition ofπ2. The
rightmost triangle by definition ofι2. The leftmost square and the innermost square commute owing
to the naturality ofδR

R . The innermost triangle is, up to symmetry, the coherence law 7 in the definition
of a linearly distributive category. The upper-right square holds owing to the naturality ofλ⊕, and the
lower-right square because⊕ is functorial.

Now for the soundness of CUTC. Without loss of generality, letX = L in the presentation of
CUTW in Table 8. It is easy to see that the soundness follows from the law

A
f- B ⊕ C C ⊗ 1

ρ⊗- C
∆- C ⊗ C

g- D
cut

A⊗ 1 - B ⊕D
ρ−1
⊗

A - B ⊕D

(25)

≤ A
f- B ⊕ C

A
f- B ⊕ C C ⊗ C

g- D

A⊗ C - B ⊕D
σ⊗

C ⊗A - B ⊕D
cut

A⊗A - B ⊕ (B ⊕D)
∆, α⊕,∇

A - B ⊕D
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To see the that Inequality 25 holds, consider the following diagram:

A
∆ - A⊗ A

f ⊗ id - (B ⊕ C)⊗ A
δR

R - B ⊕ (C ⊗ A)

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

f

U

Z
Z

Z
Z

Z
Z

f ⊗ f

~ =�
�

�
�

�
�

id ⊕ (id ⊗ f)

A⊗ 1

ρ−1
⊗

?
(B ⊕ C)⊗ (B ⊕ C)

id ⊗ f

?
δR

R- B ⊕ (C ⊗ (B ⊕ C)) B ⊕ (A⊗ C)

id ⊕ σ⊗

?

Z
Z

Z
Z

Z
Z

id ⊕ σ⊗

~
≤ B ⊕ (B ⊕ (C ⊗ C))

id ⊕ δL
R

?
B ⊕ ((B ⊕ C)⊗ C)

id ⊕ (f ⊗ id)

?

≤

ZZZ
id ⊕ (id ⊕ σ⊗)

ZZZ~
(B ⊕ C)⊗ 1

f ⊗ id

?
(B ⊕ B)⊕ (C ⊗ C)

α⊕

?
B ⊕ (B ⊕ (C ⊗ C))

id ⊕ δR
R

?

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z

ρ⊗

~

Z
Z

Z
Z

Z
Z

id ⊕ σ⊗

~

Z
Z

Z
Z

Z
Z

id ⊕ (id ⊕ g)

~
B ⊕ (C ⊗ C)

∇⊕ id

?
(B ⊕ B)⊕ (C ⊗ C)

α⊕

?
B ⊕ (B ⊕D)

�
�

�
�

�
�

id ⊕∆

> Z
Z

Z
Z

Z
Z

id ⊕ σ⊗

~

Z
Z

Z
Z

Z
Z

id ⊕ g

~
B ⊕ (C ⊗ 1)

δR
R

?

id ⊕ ρ⊗
- B ⊕ C

∆

6

id ⊕∆
- B ⊕ (C ⊗ C)

∇⊕ id

?
(B ⊕ B)⊕D

α⊕

?

Z
Z

Z
Z

Z
Z

id ⊕ g

~
B ⊕D

∇⊕ id

?

The lower-left leg is the left side of Inequality 25, and the upper-right leg is the right side. The
left inequality is Condition∆LAX from the definition of a classical category. The right inequality is
Condition∆∇. The other parts of the diagram commute for straightforward reasons. �

Now for the second main theorem:

Theorem 6.5(Ordered completeness). Let T be a net theory, and letM and N be nets ofT with
matching sequences of doors. If we havebMc 4 bNc for every interpretation ofT in a classical
category, then the judgmentM 4 N is in T .

Proof. Lemma 5.5 can be extended to the case with weakening and contraction. Thus, we get an
extended version of Proposition 5.6, for the case whereT is a net theory andCT is the classical
category from Theorem 6.3. Now the claim follows immediately. �

Theorem 6.6(Initiality) . For every classical-category modelC b−c : T - C of a net theoryT ,
there is a unique functorF : CT - C that preserves all classical-category structure on the nose
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and makes the diagram below commute.

CT
F

- C

�
�

�

C b−c
�

T

CT b−c
6

Proof. As already mentioned in the ordered-completeness proof, Lemma 5.5, and consequently Propo-
sition 5.6, can be extended to the case with weakening and contraction. So the proof of initiality works
as in the linear case, except that it remains to prove that the functorF , which is already known to pre-
serve the linearly distributive structure and negation, also preserves the monoids, co-monoids, and the
order. This follows from straightforward calculations in the classical categoryC. �

6.3. Acknowledgments. This research was partially supported by the UK EPSRC. We thank Robin
Cockett, Masahito Hasegawa, Martin Hyland, Richard McKinley, Edmund Robinson, Robert Seely,
and Christian Urban for helpful discussions, comment, and criticism. We are particularly grateful to a
referee for pointing out errors in the examples in the first and second paragraphs of§6.2. This article
has been typeset in LATEX using Paul Taylor’s “diagrams” and “prooftree” packages.

REFERENCES

[1] G. Bellin. Proof nets for multiplicative and additive linear logic. Technical Report ECS-LFCS-91-161, Department of
Computer Science, University of Edinburgh, 1991.

[2] R. F. Blute, J. R. B. Cockett, R. A. G. Seely, and T.H. Trimble. Natural deduction and coherence for weakly distributive
categories.Journal of Pure and Applied Algebra, 113(3):229–296, 1996.

[3] C.Führmann. Order-enriched categorical models of the classical sequent calculus. Edinburgh, 2003. Lecture at Inter-
national Centre for Mathematical Sciences, Workshop on Proof Theory and Algorithms.

[4] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories.J. Pure Appl. Algebra, 114(2):133–173, 1997.
Updated version available on http://www.math.mcgill.ca/˜rags.

[5] V. Danos and L. Regnier. The structure of multiplicatives.Arch. Math. Logic, 28:181–203, 1989.
[6] M. Dummett.Elements of Intuitionism. Oxford University Press, 1977.
[7] C. Führmann and D. Pym. On the Geometry of Interaction for Classical Logic. InProceedings of the Nineteenth

Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages 211–220, Turku (Finland), 2004.
[8] Carsten F̈uhrmann.The structure of call-by-value. PhD thesis, Division of Informatics, University of Edinburgh, 2000.
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