
Revision

. – p.1/49

Logics considered

1. Classical logic

2. Modal logic

3. Intuitionistic logic

4. Minimal logic (briefly)

5. Hoare logic (the odd one out)

. – p.2/49

Pervasive principles

Notions that apply to all decent logics:

1. Satisfaction relation `

2. Semantic entailment |= and validity

3. Syntactic entailment ` (natural deduction or
sequent calculus)

4. Soundness and completeness (|= = `)

Kripke semantics is also pervasive in that it ap-

plies to both modal logic and intuitionistic logic

(actually, also minimal logic).
. – p.3/49

Kinds of inference
systems

Natural deduction (and λ-calculus)

Sequent calculus
Multiplicative SC for propositional classical
logic
(Additive) SC for minimal logic, as a
framework for
Uniform proofs

Tableaux (notations for proofs designed to
make our lives easier; we considered
tableaux for Hoare logic; there are tableaux
for other logics, e.g., predicate logic)

. – p.4/49

Semantics

. – p.5/49

Semantics of logical
formulæ

In logics, meaning is often described by a
satisfaction relation

M |= A

that describes when a situation M satisfies a
formula A.

It varies between logics what formulæ and
situations are.

. – p.6/49

Satisfaction relation for
proposition classical logic

This one is straightforward:

M |= A ∧B iff M |= A and M |= B

M |= A ∨B iff M |= A or M |= B

M |= A→ B iff whenever M |= A then M |= B

M |= ¬A iff M 6|= A

M |= > always

M |= ⊥ never

M |= p iff [[p]]M = 1

. – p.7/49

Satisfaction relations of modal
logic and intuitionistic logic

The satisfaction relations of modal logic and
intuitionistic logic are more interesting.

A situation in modal logic or intuitionistic is a
pair (M,x) consisting of a Kripke model M
and a world x in M .

One usually writes

x
 A

(“x forces A”) instead of (M,x) |= A.

. – p.8/49

Forcing for modal
logic

The forcing relation looks basically like the
satisfaction relation of classical propositional
logic, except for the rules

x
 p iff p ∈ L(x)

x
 2A
iff for each y ∈ W with R(x, y)
we have y
 A

x
 3A
iff there is a y ∈ W with R(x, y)
such that y
 A

. – p.9/49

Forcing intuitionistic
logic

The forcing relation looks basically like the
satisfaction relation of classical propositional
logic, except for the rules

x
 p iff p ∈ L(x)

x
 A→ B iff for all y with x ≤ y,

if y
 A then y
 B.

. – p.10/49

Semantic entailment

Definition. Let Γ be a set of formulæ, and let B
a formula. We say that Γ semantically entails B
and write

Γ |= B

if every situation that satisfies all formulæ in Γ
also satisfies B.

(Warning: Γ |= B differs from M |= B.)

. – p.11/49

Validity

Definition. A formula A is called “valid” if every
situation satisfies it, i.e. if

|= A.

. – p.12/49

Soundness and
completeness

Soundness: If the syntactic entailment Γ ` A is derivable,
then the semantic entailment Γ |= A holds.

Completeness: If the semantic entailment holds Γ |= A, then
the syntactic entailment Γ ` A is derivable.

Soundness and completeness can be stated and hold for

all kinds of logics (e.g., propositional logic, predicate
logic, classical logic, intuitionistic logic, modal logic);

various inference systems (e.g., natural deduction or
sequent calculus).

. – p.13/49

Natural deduction

. – p.14/49

ND for classical logic

Definition. A natural deduction proof in classical
propositional logic of Γ ` A is a finite tree whose leaves are
formulæ in Γ and which is built by using only the rules
below.

A B
∧i

A ∧ B

A B
∧e

A

A B
∧e

B

[A]
·
·
·
B

→ i
A → B

A → B A
→ e

B

⊥
⊥e

A

¬A
·
·
·
⊥

RAA

A . – p.15/49

A different presentation of ND
for classical logic

Γ ` A Γ ` B
∧i

Γ ` A ∧B

Γ ` A ∧B
∧e

Γ ` A

Γ ` A ∧B
∧e

Γ ` B

Γ, A ` B
→ i

Γ ` A→ B

Γ ` A→ B Γ ` A
→ e

Γ ` B

Γ ` ⊥
⊥e

Γ ` A

Γ,¬A ` ⊥
RAA

Γ ` A
Ax

Γ, A ` A

Note the Ax rule, which is not necessary in the

other presentation.

. – p.16/49

ND for intuitionistic
logic

Definition. A ND proof in intuitionistic proposi-

tional logic of Γ ` A is a ND proof in classical

logic of Γ ` A that does not contain RAA.

. – p.17/49

Exercises
Give ND proofs for the formulæ below (you may use RAA

when you are asked this in the exam):

(A→ B) → ((B → C) → (A→ C))

(¬B → ¬A) → (A→ B) (contrapositive)

((A→ B) → A) → A (Pierce’s law)

(A ∨B) → ¬(¬A ∧ ¬B)

(¬A ∨B) → (A→ B)

(A ∧B) → ¬(¬A ∨ ¬B)

¬(¬A ∨ ¬B) → (A ∧B).

. – p.18/49

Variable capture

Consider e.g. the formula below, which holds
e.g. for the natural numbers.

A = ∀x.∃y.x < y

Applying ∀-elimination with t = y yields the
following formula, which is not valid.

∃y.y < y

The mistake has been caused by variable
capture: the variable y in t has been caught
by the quantifier ∃y.

. – p.19/49

∀-elimination in ND

Γ ` ∀x.A
∀e if t is free for x in A

Γ ` A[t/x]

“t is free for x in A” has an unpleasantly techni-

cal definition. It is okay to say replace this condi-

tion by the more informal statement “if no variable

capture occurs (when the substitution [t/x] is ap-

plied)”.

. – p.20/49

∀-introduction
In the style with assumptions, the rule for
∀-introduction is

Γ ` A
∀i if x 6∈ FV (Γ).

Γ ` ∀x.A

Intuitively,

A holds of an arbitrary x
.

A holds for all x

The side condition x 6∈ FV (Γ) is the formal way of

saying that x is arbitrary.
. – p.21/49

∃-elimination

Γ ` ∃x.A Γ, A ` B
∃e if x 6∈ FV (Γ, B)

Γ ` B

Intuitively,

there is an x such that A(x)

an arbitrary x s.t. A(x) implies B
.

B holds

The side condition x 6∈ FV (Γ, B) is the formal way

of stating that x is arbitrary.

. – p.22/49

Exercise
Show the claims below, where x 6∈ FV (B).

1. ∀x.(A→ B) ` (∃x.A) → B

2. (∃x.A) → B ` ∀x.(A→ B)

3. ∃x.(A ∧B) ` (∃x.A) ∧B

4. (∃x.A) ∧B ` ∃x.(A ∧ B)

. – p.23/49

Solution for Ex. 1
Let Γ = ∀x.(A→ B),∃x.A.

Ax
Γ ` ∃x.A

Ax
Γ, A ` ∀x.A→ B

∀e
Γ, A ` A→ B

Ax
Γ, A ` A

→ e
Γ, A ` B

∃e
Γ ` B

→ i
∀x.(A→ B) ` (∃x.A) → B

The ∃e is correct because x 6∈ FV (Γ, B).

. – p.24/49

Solution for Ex. 2
Let Γ = (∃x.A) → B,A.

Ax
Γ ` (∃x.A) → B

Ax
Γ ` A

∃i
Γ ` ∃x.A

→ e
Γ ` B

→ i
(∃x.A) → B ` A→ B

∀i
(∃x.A) → B ` ∀x.(A→ B)

The ∀i is correct because x 6∈ FV ((∃x.A) → B).

. – p.25/49

Solution for Ex. 3
Let C = A ∧B.

Ax

∃x.C ` ∃x.C

Ax

∃x.C, C ` C
∧e

∃x.C, C ` A
∃i

∃x.C, C ` ∃x.A
∃e

∃x.C ` ∃x.A

Ax

∃x.C ` ∃x.C

Ax

∃x.C, C ` C
∧e

∃x.C, C ` B
∃e

∃x.C ` B
∧i

∃x.C ` (∃x.A) ∧ B

The left ∃e is correct because x 6∈

FV (∃x.C,∃x.A); the right ∃e is correct because

x 6∈ FV (∃x.C,B). . – p.26/49

Hoare logic

. – p.27/49

Partial correctness
vs. total correctness

There are two readings for a Hoare triple
([φ])C([ψ]):

Partial correctness: if the initial state
satisfies φ and C is executed and terminates,
then the resulting state satisfies ψ. We write

|=par ([φ])C([ψ]).

Total correctness: if the initial state satisfies
φ, then C terminates and the resulting state
satisfies ψ. We write

|=tot ([φ])C([ψ]).
. – p.28/49

Rules for partial
correctness

([φ])C1([η]) ([η])C2([ψ])
Composition

([φ])C1;C2([ψ])

Assignment
([ψ[E/x]])x = E([ψ])

([φ ∧ B])C1([ψ]) ([φ ∧ ¬B])C2([ψ])
If-statement

([φ])ifB then {C1}else{C2}([ψ])

([ψ ∧B])C([ψ])
Partial-while

([ψ])whileB {C}([ψ ∧ ¬B])

` φ′ → φ ([φ])C([ψ]) ψ → ψ′

Implied
([φ′])C([ψ′]) . – p.29/49

Partial correctness of Fac1 (something very

similar may be in the exam)

([true])

([1 = 0!]) Implied

y = 1

([y = 0!]) Assignment

z = 0

([y = z!]) Assigmnent

while (z ! = x){

([y = z! ∧ z 6= x]) Invariant ∧ guard

([y ∗ (z + 1) = (z + 1)!]) Implied

z = z + 1

([y ∗ z = z!]) Assignment

y = y ∗ z

([y = z!]) Assignment

}

([y = z! ∧ ¬(z 6= x)]) Partial-while

([y = x!]) Implied . – p.30/49

The Total-while rule
The Total-while rule is like the Partial-while rule,
but with augmented pre- and postconditions:

([η ∧B ∧ (0 ≤ E = E0)])C([η ∧ (0 ≤ E < E0)]) Total-while.
([η ∧ (0 ≤ E)])whileB {C}([η ∧ ¬B])

E is the variant, which decreases during
every iteration: if E = E0 before the loop, then
it is strictly less than E0 after it—but it remains
non-negative.

Technically, E0 is a variable that does not
occur anywhere else.

. – p.31/49

Total correctness of
Fac1

([x ≥ 0])

([1 = 0! ∧ 0 ≤ x − 0]) Implied

y = 1

([y = 0! ∧ 0 ≤ x − 0]) Assignment

z = 0

([y = z! ∧ 0 ≤ x − z]) Assigmnent

while (z ! = x){

([y = z! ∧ z 6= x ∧ 0 ≤ x − z = E0]) Invariant ∧ guard

([y ∗ (z + 1) = (z + 1)! ∧ 0 ≤ x − (z + 1) < E0]) Implied

z = z + 1

([y ∗ z = z! ∧ 0 ≤ x − z < E0]) Assignment

y = y ∗ z

([y = z! ∧ 0 ≤ x − z < E0]) Assignment

}

([y = z! ∧ ¬(z 6= x)]) Total-while

([y = x!]) Implied . – p.32/49

Sequent calculus

. – p.33/49

The sequent calculus in
multiplicative form: Ax , Cut ,
introduction rules

Ax

A ` A

Γ2 ` ∆1, A, ∆3 Γ1, A, Γ3 ` ∆2

Cut

Γ1, Γ2, Γ3 ` ∆1, ∆2, ∆3

Γ, A, B ` ∆
L∧

Γ, A ∧ B ` ∆

Γ ` A, ∆ Γ′ ` B, ∆′

R∧
Γ, Γ′,` A ∧ B, ∆, ∆′

Γ, A ` ∆ Γ′, B ` ∆′

L∨
Γ, Γ′, A ∨ B ` ∆, ∆′

Γ ` A, B, ∆
R∨

Γ ` A ∨ B, ∆

L⊥
⊥ `

Γ ` ∆
R⊥

Γ ` ⊥, ∆

Γ ` ∆
L>

Γ,> ` ∆

R>
` >

Γ ` A,∆ Γ′, B ` ∆′

L →
Γ, Γ′, A → B ` ∆, ∆′

Γ, A ` ∆, B
R →

Γ ` A → B, ∆

. – p.34/49

The sequent calculus in
multiplicative form: structural rules

Γ, A,B,Γ′ ` ∆
LE

Γ, B,A,Γ′ ` ∆
Γ ` ∆, A,B,∆′

RE
Γ ` ∆, B,A,∆′

Γ,Γ′ ` ∆
LW

Γ, A,Γ′ ` ∆
Γ ` ∆,∆′

RW
Γ ` ∆, A,∆′

Γ, A,A,Γ′ ` ∆
LC

Γ, A,Γ′ ` ∆
Γ ` ∆, A,A,∆′

RC
Γ ` ∆, A,∆′

. – p.35/49

Additive form
The sequent calculus in additive form has
different variants of R∧, L∨, L→ and Cut , e.g.,

Γ ` A,∆ Γ ` B,∆
R ∧ .

Γ ` A ∧ B,∆

In the presence of the structural rules, the additive

variants are equivalent to the multiplicative vari-

ants.

. – p.36/49

Sequent calculus for
predicate logic

The extra rules are

Γ, A[t/x] ` ∆
L∀

Γ,∀x.A ` ∆
Γ ` A,∆

R∀
Γ ` ∀x.A,∆

Γ, A ` ∆
L∃

Γ,∃x.A ` ∆
Γ ` A[t/x],∆

R∃,
Γ ` ∃x.A,∆

where in R∀ and L∃ it must hold that x 6∈

FV (Γ,∆), and in L∀ and R∃ it must hold that no

variable capture occurs.

. – p.37/49

Exercises
Give proofs of the following judgments in the sequent
calculus (in multiplicative form):

A ∧ (B ∨ C) ` (A ∧B) ∨ C (1)

(∃x.A) ∧B ` ∃x.(A ∧B) where x 6∈ FV (B) (2)

∀x.(A→ B) ` (∃x.A) → B where x 6∈ FV (B) (3)

. – p.38/49

Solution to Ex. 1

Ax
A ` A

Ax
B ` B

R∧
A,B ` A ∧ B

Ax
C ` C

L∨
A,B ∨ C ` A ∧ B,C

R∨
A,B ∨ C ` (A ∧B) ∨ C

L∧
A ∧ (B ∨ C) ` (A ∧B) ∨ C

Note that there are straightforward “dual” versions

of this proof, i.e. versions that differ only w.r.t. the

order in which ∧ and ∨ are tackled.

. – p.39/49

Solution to Ex. 3

Ax
A ` A

Ax
B ` B

A→ B,A ` B
L∀

∀x.(A→ B), A ` B
L∃

∀x.(A→ B),∃x.A ` B
R →

∀x.(A→ B) ` (∃x.A) → B

The L∃ is correct because x 6∈ FV (∀x.(A →

B), B).

. – p.40/49

Simulating ND elimination
rules in the sequent calculus

The elimination rules of ND are simulated
essentially by a left introduction rule followed by
a cut, e.g.,

Γ ` ∀x.A

Ax
A[t/x] ` A[t/x]

L∀
∀x.A ` A[t/x]

Cut
Γ ` A[t/x]

. – p.41/49

Proof search

. – p.42/49

Proof search and
sequent calculus

Proof search tries to find a proof of a given
goal Γ ` A.

The challenge is to reduce the search space
of possible proofs.

According to current research, this is best
attempted within the sequent calculus.

The minimal sequent calculus in the next
slide works very well as a framework for proof
search.

It is additive, cut-free, single-succedent.
. – p.43/49

The “minimal
sequent calculus”

Ax

Γ, A ` A

Γ, A, B ` C
L∧

Γ, A ∧ B ` C

Γ ` A Γ ` B
R∧

Γ ` A ∧ B

Γ, A ` C Γ, B ` C
L∨

Γ, A ∨ B ` C

Γ ` Ai

(i = 1, 2)R∨
Γ ` A1 ∨ A2

Γ ` A Γ, B ` C
L →

Γ, A → B ` C

Γ, A ` B
R →

Γ ` A → B

Γ, A[t/x] ` B
L∀

Γ,∀x.A ` B

Γ ` A
R∀

Γ ` ∀x.A

Γ, A ` B
L∃

Γ,∃x.A ` B

Γ ` A[t/x]
R∃

Γ ` ∃x.A
. – p.44/49

Uniform proofs

Uniform proofs result from putting an extra
constraint on the search space given by the
minimal sequent calculus.

The idea is that the goal is taken to pieces (by
right rules) as long as possible; left rules are
applied only when the goal is atomic.

Definition. A proof in the minimal sequent calcu-

lus is uniform if every sequent Γ ` A with non-

atomic succedent A is obtained from a right rule.
. – p.45/49

(Non-)Examples

The following proof is uniform:

Ax
p, q ` p

L∧
p ∧ q ` p

Ax
p, q ` q

L∧
p ∧ q ` q

R ∧ .
p ∧ q ` p ∧ q

The following proof is not uniform:

Ax
p, q ` p

Ax
p, q ` q

L∧
p, q ` p ∧ q

L ∧ .
p ∧ q ` p ∧ q

. – p.46/49

∨ and ∃
Not all judgments Γ ` A that are provable in the minimal
sequent calculus have uniform proofs. This is because of ∨
and ∃: e.g., a uniform proof of ∃x.p(x) ` ∃x.p(x) would
have to look as follows:

···
∃x.p(x) ` p(x)

R∃,
∃x.p(x) ` ∃x.p(x)

but this proof cannot be completed, because ∃x.p(x) ` p(x)

is not valid (because the fact that p(x) holds for some x

doesn’t imply that p(x) holds for an arbitrary x), and there-

fore not provable. Similarly for ∨. . – p.47/49

The λ-calculus

. – p.48/49

The λ-calculus
The material from the λ-calculus lecture is rele-

vant for the exam. (Have a good look at the notion

of inhabited types.)

. – p.49/49

	
	Logics considered
	Pervasive principles
	Kinds of inference systems
	
	Semantics of logical formul{ae }
	{large Satisfaction relation for proposition classical logic}
	{large Satisfaction relations of modal logic and intuitionistic logic}
	Forcing for modal logic
	Forcing intuitionistic logic
	Semantic entailment
	Validity
	Soundness and completeness
	
	ND for classical logic
	{large A different presentation of ND for classical logic}
	ND for intuitionistic logic
	Exercises
	Variable capture
	$�orall $-elimination in ND
	$�orall $-introduction
	$exists $-elimination
	Exercise
	Solution for Ex. 1
	Solution for Ex. 2
	Solution for Ex. 3
	
	Partial correctness vs. total correctness
	Rules for partial correctness
	small {Partial correctness of $	exttt {Fac1}$ (something very similar may be in the exam)}
	The Total-while rule
	Total correctness of $	exttt {Fac1}$
	
	{
ormalsize The sequent calculus in multiplicative form: $Ax $, $Cut $, introduction rules}
	{
ormalsize The sequent calculus in multiplicative form: structural rules}
	Additive form
	Sequent calculus for predicate logic
	Exercises
	Solution to Ex. 1
	Solution to Ex. 3
	{large Simulating ND elimination rules in the sequent calculus}
	
	Proof search and sequent calculus
	The 	heword {minimal sequent calculus}
	Uniform proofs
	(Non-)Examples
	$vee $ and $exists $
	
	The $lambda $-calculus

