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Logics considered

Classical logic

Modal logic

Intuitionistic logic

Minimal logic (briefly)

Hoare logic (the odd one out)



Pervasive principles

Notions that apply to all decent logics:
1. Satisfaction relation
2. Semantic entailment = and validity

3. Syntactic entailment  (natural deduction or
sequent calculus)

4. Soundness and completeness (= = I)

Kripke semantics Is also pervasive In that it ap-
plies to both modal logic and Intuitionistic logic
(actually, also minimal logic).



Kinds of inference
systems

m Natural deduction (and A-calculus)

m Sequent calculus
= Multiplicative SC for propositional classical
logic
= (Additive) SC for minimal logic, as a
framework for

= Uniform proofs

m Tableaux (notations for proofs designed to
make our lives easier; we considered
tableaux for Hoare logic; there are tableaux
for other logics, e.qg., predicate logic)



Semantics



Semantics of logical
formulae

m In logics, meaning is often described by a
satisfaction relation

MEA

that describes when a situation M satisfies a
formula A.

m [t varies between logics what formulae and
situations are.



Satisfaction relation for
proposition classical logic

This one Is straightforward:

Aand M = B

M
M
M

ANBIft M

AV BiIft M

Aor M

— A — B Iff whenever M

M= —Aiff M A

— T always

M
M = 1 never
M

= p iff [p]x

=1

= b

A then M




Satisfaction relations of modal
logic and intuitionistic logic

The satisfaction relations of modal logic and
Intuitionistic logic are more interesting.

m A situation in modal logic or intuitionistic Is a
pair (M, z) consisting of a Kripke model M
and a world x In M.

m One usually writes
xlFA
(“x forces A”) instead of (M, x) = A.




Forcing for modal
logic

The forcing relation looks basically like the
satisfaction relation of classical propositional
logic, except for the rules

rlFp iff pe L(x)

oa ffforeach y € W with R(x,y)
we have y IF A
iff thereisa y € W with R(z,y)

ik oA suchthaty IF A



Forcing intuitionistic
logic

The forcing relation looks basically like the
satisfaction relation of classical propositional
logic, except for the rules

vlFp iff pe L(x)

rlFA— B iff forallywithz <y,
If y I Athenyl- B.



Semantic entaillment

Definition. Let I' be a set of formulae, and let B
a formula. We say that I' semantically entalls B
and write

I'=DB

If every situation that satisfies all formulae in I
also satisfies B.

(Warning: I' = B differs from M = B.)



Validity

Definition. A formula A iIs called “valid” if every
situation satisfies It, I.e. If

— A.




Soundness and
completeness

Soundness: If the syntactic entailment I' = A is derivable,
then the semantic entailment I" = A holds.

Completeness: If the semantic entailment holds I' = A, then
the syntactic entailment I' = A is derivable.

Soundness and completeness can be stated and hold for

m all kinds of logics (e.g., propositional logic, predicate
logic, classical logic, intuitionistic logic, modal logic);

m various inference systems (e.g., natural deduction or
sequent calculus).
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Natural deduction



ND for classical logic

Definition. A natural deduction proof in classical
propositional logic of I' -+ A Is a finite tree whose leaves are
formulae in I and which is built by using only the rules

below.
A B A B A B
A1 Ne Ne
ANAB A B
[A]
: A—>B A
. .
B B
— 1
A— B
e —,A
J_ .
— le
1
A _ RAA

A . —p.15/49



A different presentation of ND
for classical logic

[FA LB . THAAB — THAAB
r-AnB " r-a ¢ r-p ' °
rArB  T+FA—B THA
r-4—-pB = I~ B $ 6
- = ’ AA 7
A * rEaA IAFA

Note the Az rule, which Is not necessary In the
other presentation.

. —p.16/49



ND for intuitionistic
logic

Definition. A ND proof in intuitionistic proposi-
tional logic of I' = A i1s a ND proof in classical
logic of I' = A that does not contain RAA.



Exercises

Give ND proofs for the formulae below (you may use RAA
when you are asked this in the exam):

(A= B) = ((B—C)—=(A—=/0))
(-B — —-A) - (A — B) (contrapositive)
(A—-B)—A)— A (Pierce’s law)
(AV B) — =(=AA-B)
(~AVB) — (A— B)
(AANB) — =(-AV -B)
—(=AV-B) — (AN B).

.—p.18/49



Variable capture

m Consider e.g. the formula below, which holds
e.g. for the natural numbers.

A=Vrdyr <y

= Applying V-elimination with ¢ = y yields the
following formula, which is not valid.

dy.y <y

= The mistake has been caused by variable
capture: the variable y Iin ¢t has been caught
by the quantifier dy.



V-elimination in ND

['=Vr. A

T F Alt/2] Ve Iftisfreeforzin A

“t Is free for x In A” has an unpleasantly techni-
cal definition. It is okay to say replace this condi-
tion by the more informal statement “if no variable
capture occurs (when the substitution [t/x| is ap-
plied)”.



V-introduction

In the style with assumptions, the rule for
V-introduction is

'~ A
['+=Vx. A

Vi ifxg FV(T).

Intuitively,

A holds of an arbitrary x
A holds for all x

The side condition x ¢ FV (I') is the formal way of
saying that x Is arbitrary.




-elimination

'+32.A T,AF B
['FB

de ifz ¢ FV(I', B)
Intuitively,

there is an x such that A(x)
an arbitrary = s.t. A(x) implies B
B holds

The side condition z ¢ FV(I', B) is the formal way
of stating that « Is arbitrary.




Exercise

Show the claims below, where x ¢ FV(B).
1. Vx.(A — B)F (dx.A) — B

2. (dz.A) - B+ Vz.(A — B)

3. dz.(ANB)F (Ixz.A) A B

4, (dx. A)ANBF3dz. (AN B)



Solution for Ex. 1

Let T = Vz.(A — B), 3z.A.

Az
' AFVer.A— B
’ Rl Ve Az

Ay I'AFrA— B I'AF A
[I'-dx. A I'AF B
I'-B
Vx.(A— B)F (d2.A) — B

> e
Je

X}

The de is correct because x ¢ FV(I', B).



Solution for Ex. 2

Let' = (dz.A) — B, A.

Ax Fl_AAgi
'+ (dz.A) - B 'Fdz. A~
B O

(32.A) - BFA— B ’VZZ.

(3x.A) - B+ Vz.(A — B)

The Vi is correct because = ¢ FV((dx.A) — B).



Solution for Ex. 3

LetC' = AN B.
Ax
dx.C,C +C
Ae Az
de.C,CH A dx.C,C' - C
Ax =) Az Ae
dz.C' + dz.C dz.C,C'+dz. A dz.C + Jz.C de.C,C + B
de de
dx.C' + dz. A dx.C+ B

AT

Jx.CF (d=z.A) AN B

The left de Is correct because =z ¢
FV(3dx.C,dx.A); the right de is correct because
& FV(dx.C. B).



Hoare logic



Partial correctness
VS. total correctness

There are two readings for a Hoare triple
(P)C():

m Partial correctness: If the Initial state
satisfies ¢ and C' Is executed and terminates,
then the resulting state satisfies ». We write

—par (@) C ().

m Total correctness: If the Initial state satisfies
o, then C' terminates and the resulting state
satisfies ¢». We write

—tot ([¢D C ([w]) ‘




Rules for partial
correctness

(@)Ci(n)  (n)Ca(v)
() Ch; Ca)

(WIE/z])z = E(W)

¢/\B Ol @D ([qﬁ/\ﬂB])Cb([w])
([gb])i f B])t h(énD{Cl}el se{Cy} (v I-statement

(v A B)C (@)
(¢)whi I e B{C}(¢ A —B)

(¢ )C (W)

Composition

Assignment

Partial-while

Implied



Partial correctness of Facl (something very

similar may be in the exam)

(true)
(1 =0

y=1

(y = 0!)

z=20

(y = 2))

while (2! = z){

}

(y = 2! A z # x)
(y*(z+1) = (z+1))
z=z++1
(yxz = 2!)
Y=y *z
(y = 2!)

(y = 2! A =(z # 2))
(y = 2!)

Implied

Assignment

Assigmnent

Invariant A guard
Implied

Assignment

Assignment

Partial-while
Implied

. — p.30/49



The Total-while rule

The Total-while rule is like the Partial-while rule,
but with augmented pre- and postconditions:

(nABA(0<E=EFE))CnA0<E<E))
(nN(0< E))whileB{C}nN-B)

Total-while.

m £ IS the variant, which decreases during
every iteration: if £ = E, before the loop, then
it Is strictly less than £, after it—but it remains
non-negative.

m Technically, £ Is a variable that does not
occur anywhere else.



(z = 0)
(1=0A0<z—0)
y =1
[y=0'A0 <L z—0)
z=0
ly=2'N"0<z—2)
while(z!= z){
(y=2Az#2N0<z— 2= E)
(y*(z+1)=(z+ A0z — (2 +1) < Eo)
z=z+1
(yxz=2'N0<2— 2 < Ep)
y=yx*2z
ly=2'AN0<z—2z< Ep)
}
(y = 2! A =(z # x))
(y = zl)

Total correctness of

Implied

Assignment

Assigmnent

Invariant A guard
Implied

Assignment

Assignment

Total-while

Implied .~ p.32/49



Seqguent calculus



The sequent calculus In
multiplicative form: Az, Cut,
Introduction rules

Ty - AL A A Tq,A,T3F A

Az Cut
AFA Ty,T2, T3 F A1, Ag, Ag
A, BFA I'-AA T'FB,A
LA RA
F,A/\B"A F,F,,FA/\B,A,A/
I'A+rA T/, B+ A’ I'+A B, A
LV RV
I, AVBF A A '-AvV B, A
: A
— Ll  — RI
L+ TF1,A
' A
— LT —RT
OTHA =T
'AA T/, BFA' I'A+A,B
L — R —

T/, A — BFA,A T'FA— BA

. —p.34/49



The sequent calculus In
multiplicative form: structural rules

DEA A B A
FEA B AN
DI E A DEALA
FAT A traasn ™
DA AT E A DEALA AN
FATFA YO Traan B¢



Additive form

The sequent calculus in additive form has
different variants of RA, LV, L — and Cut, e.g.,

'-AA TFBA
TFAABA

RA.

In the presence of the structural rules, the additive
variants are equivalent to the multiplicative vari-
ants.



Sequent calculus for
predicate logic

The extra rules are

I Alt/z] - A DEAA
TveArA XY Trveaa ™
CAEA CE Alt/z), A

FarArAY  Tracaa

where In RY and L4 it must hold that =z &
FV(I',A), and in LY and R3 it must hold that no
variable capture occurs.



Exercises

Give proofs of the following judgments in the sequent
calculus (in multiplicative form):

ANBVCO)F(AANB)VC (1)
(Fx. A)ANBFdx.(AANB) wherex & FV(B) (2)
Vx.(A— B)F (dz.A) = B wherez ¢ FV(B) (3)

. — p.38/49



Solution to Ex. 1

Ax Az
AF A BI—BR/\ P

ABFAAB CrC
A BVCFANB,C .
A BVCF(ANB)VC ',

ANBVOF(AAB)VC

Note that there are straightforward “dual” versions
of this proof, I.e. versions that differ only w.r.t. the
order in which A and Vv are tackled.



Solution to Ex. 3

AF 4 4% BE B A%

A— B AFB Iy
Vx.(A— B),AF B 7S

Vr.(A— B),dz. A+ B P

V. (A — B)F (dz.A) — B

The L7 is correct because = ¢ FV(Vr. (A —
B), B).



Simulating ND elimination
rules in the sequent calculus

The elimination rules of ND are simulated
essentially by a left introduction rule followed by

a cut, e.qg.,
Az
Alt/x] F Alt/z] Iy
['-Vz.A Ve A Alt/x] Cut

CF Alt/a]



Proof search



Proof search and
sequent calculus

m Proof search tries to find a proof of a given
goal I' - A.

m The challenge Is to reduce the search space
of possible proofs.

m According to current research, this is best
attempted within the sequent calculus.

= The minimal sequent calculus in the next
slide works very well as a framework for proof
search.

m |t IS additive, cut-free, single-succedent.



The “minimal
sequent calculus”

Ax
IAFA
I'hA,B+-C I'HrA T'HB
LA RA
' AANBEC I'-AAB
rA+-C TI',B-C ' A;
Lv (i=1,2)RV
I'hAvBFEC ' AV As
'-A I''B-EC I'A+ B
L — R —
I'NA—-BEC I'HA— B
I'Alt/z] - B I'-A
LY RY
I'Vx.A+ B I'FVzx.A
I'AEB '+ Alt/x]
L3 R

I'dz. A+ B I'-3dx. A

. — p.44/49



Uniform proofs

m Uniform proofs result from putting an extra
constraint on the search space given by the
minimal sequent calculus.

m The idea Is that the goal is taken to pieces (by
right rules) as long as possible; left rules are
applied only when the goal is atomic.

Definition. A proof in the minimal sequent calcu-
lus Is uniform if every sequent I' = A with non-
atomic succedent A Is obtained from a right rule,_,



(Non-)Examples

The following proof is uniform:

Az Ax
anplm anqlm

|_
pAgED pAquRA.
pAgEDAQ

The following proof is not uniform:

Ax Ax
p,qED anqLA

p,q-pAQq
LA.
pAgEDAg




V and -

Not all judgments I' - A that are provable in the minimal
sequent calculus have uniform proofs. This is because of Vv
and d: e.g., a uniform proof of Jz.p(z) F Jx.p(x) would
have to look as follows:

Elx.p(x). = p(x)
Jz.p(z) F dx.p(x)

R3,

but this proof cannot be completed, because Jz.p(z) F p(x)
IS not valid (because the fact that p(x) holds for some =«
doesn’t imply that p(x) holds for an arbitrary x), and there-

.= p.47/49

fore not provable. Similarly for V.



The )\-calculus



The )\-calculus

The material from the A-calculus lecture is rele-
vant for the exam. (Have a good look at the notion
of inhabited types.)
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