About the exam

m The lecture after this one will be revision.

= | will present some hints, exercises, and
model solutions.

m Also relevant: the exercises on my slides.

.—p.1/28

Past exams

| |t is worth looking at the exams of the last two years
(Prof. Pym): enter

http://ww. bat h. ac. uk/ | i brary/ exanpapers/search. htm
and search for comp007/1.

B Relevant questions are Q1 and Q2 in the 2002 exam,
and all questions in the 2003 exam.

m | did not do Bunched Logic, but Hoare logic instead.

®m There will be some exercises where you are asked to
find natural deduction proofs and sequent proofs for
given formulae or sequents.

.—p.2/28

http://www.bath.ac.uk/library/exampapers/search.html

The \-calculus & the

Propositions-as-Types paradigm

Overview

= We shall introduce the famous M-calculus,
which was originally invented as a notation for
computable functions and later became the
basis of functional programming.

m We shall study a surprising connection
between A-calculus and logic.

m This connection Is called the
Propositions-as-types paradigm.

The A-operator

We write

x. M

for the function that takes an x and returns the value
described by the term M.

Examples:

B)\z.x * 2. IS the function that doubles its argument.

B[= \x.\y.x x y IS the function that, given x, returns a
function that, given y, returns x x y. E.g., F'(2) is the
doubling function above.

. —p.5/28

A-terms

The syntax of the untyped M-calculus is given
as follows:

Variables: =x,v, ...
Constants: ¢, d:=+]| % |[0|1]|2...
Aterms: M N ==X e.M|MN |z|c

W)M/ N stands for the application of the “function” M to the
argument N (i.e. for what is often written as M (V).

B The infix notation = x y we used Is just a nice-looking
notation for the \-term ((xx) y).

.—p.6/28

History of the
A-calculus

m Introduced by A. Church in the 1930’s as a
notation for computable functions, in the
context of studying the foundations of
mathematics.

m [n the 1950’s, became the basis of real-life
programming languages based on it, e.g.
LISP. (LISP actually has the keyword
“lambda’.)

m Since the 1960’s, key tool In
programming-language theory.

Pairing

The)\-calculus Is often extended with
m pairing terms of the form (M, N), and

m projection terms of the forms 7 (M), mo(M).
E.g., the term

Ax Y. (m1(x), y)

takes an argument = (which is a pair), and then an
argument y, and returns the pair whose second

component is y, and whose first component is the
first component of x.

Types

A-terms are often given types. Types are given
by the following grammar:

A B:= A— B (function types)
Ax B (product types,
l.e., types of pairs)
int, nat, bool, ... (atomic types).

E.g., a possible type of Af A\g. \x.(fx) — (gx) IS

(nat — int) — ((nat — int) — (nat — int)).

To give types to variables, we introduce
contexts.

Definition. A context I' is a finite sequence

Q312A1,£U22A2,...,£L’n214n

where x; Is a variable and A; is a type for every 1,
and the z; are mutually different.

Typing judgments

® \We shall introduce judgments of the form
I'-M: A,

where I' is a context, M Is a A\-term, and A is a type.
B The intended meaning Is
“In context I', M has type A.”
® In the special case where I' Is empty, we say that M

Inhabits the type A.

=M : A

.—p.11/28

Typing rule for
variables

The typing rule for variables is
ifx:AisinT Az

I'+xz:A

Note the similarity with the Ax rule Iin natural de-
duction.

Typing rules
Involving —

I'-M:A— B ' N A
I'-MN :B

I''ev:AF M :B
I'EXe: AM:A— B

X

(The “: A” after “Ax” Is only needed to preserve
the knowledge that « has type A.)

Note the similarity with the ND rules for —.

Hm Q: Is there a A-term M that inhabits the type
A— ((A— B)— B)?

mA: Yes: M = \x: A)Nf: A— B.fx. To see this, consider
the typing derivation below.

Az

> €

ac:A,f:A—>B|—f:A—>BAaj x:A fA—-BFux:A
x:A f:A— Bl fz:B
r:AFANf:A— B fr:(A—B)—B
FXz: AN A— B.fr:A— (A— B) — B)

.—p.14/28

m Q: Is there a A\-term N that inhabits the type
(A= B)—B)— B) = (A— B)?
m A Yes:
N = M:((A—B)— B)— BAx:Ah(Mz),

where M is the term from the previous slide.

.—p.15/28

Typing rules
Involving x

I'=M:A I'-N:B

TF(MN):AxB '
[FMAxB — TEM:AxB
' m (M)A c ' mo(M) :B c

Note the similarity with the ND rules for A.

The simply-typed
A-calculus

Definition. The formal system of judgments

I'=M: A

that are derivable using the rules Ax, — 7, — e,
x 1, and xe Is called the simply-typed A-calculus
(with atomic types, function types, and product

types).

Typing rules of the
simply-typed A-calculus

fxz:Aisinl Az

I'-xz:A

'r-mM:A T'HN:B
I'-(M,N):AxB

X1

I'EM:Ax B I'EM:Ax B
X e
C'Em(M):A I'Emo(M):B

Xe

I'-M:A—-B T'EFNA I'Nz:A-M:B

- MN B " TE M AMA-B

Propositions as
types

m Erasing the \-terms and reading x as A
yields intuitionistic ND for A and —. (As we
shall see, this can be extended to V.)

m SO, terms of the simply-typed A-calculus are
In perfect correspondence with ND-proofs In
Intuitionistic propositional logic!

m This Is called the Propositions-as-Types
paradigm (a.k.a. “Curry-Howard
Isomorphism”), because it shows that
propositions (= formulae) and types are
essentially the same.

Significance

m Because A-terms can be seen as functional
programs, we have correspondence between
programs and proofs.

m The scope of the Propositions-as-Types
paradigm goes beyond the logics and
A-calculus considered in this lecture.

m [t has had a great impact on the design of
programming languages, causing a transfer
of design principles between logics and
programming languages (see e.g. ML).

Inhabited types and
validity

Owing to the Propositions-as-Types paradigm,
we know:

Proposition. For every type A, the following are
equivalent:

1. A, viewed as a formula, is provable In
intuitionistic ND (and therefore valid In
Intuitionistic logic).

2. A i1s inhabited by a term of the simply-typed
A-calculus.

We know e.g. that the formula
(A— B) — B) — A

IS not generally inhabited by a A-term. For in the
case B = 1, we get

(A— 1) — 1) — A,

which iIs essentially RAA and not valid for all A In
Intuitionistic logic.

Towards conversion

Consider how we evaluate A\-terms, e.g.

((Azx : nat. Ay : nat.m(x,y))2)3

(see lecture). The sequence of evaluation steps
can be seen as the execution of a program.

conversion

Definition. A term M converts to a term M’ if
one of the following three cases holds:

M = Wl(Ml,MQ) M = 7T2(M1,M2) M = ()\CE . AN)L
M = M, M’ = M, M’ = N[L/z]

where N|[L/zx] is the term that results from N by
replacing every free occurrence of x by the term
L. The term M is called the redex, and M’ is
called the contractum.

Reduction

Definition. Aterm M reduces to aterm N |f
there Is a sequence of conversions from M to N,
l.e., a sequence

M = My, M;,... M, =N
such that for: = 0,1,...,n — 1, M,;,; IS obtained

by replacing a redex by its contractum. We write
M ~s N.

Reduction and proofs

Conversions of the form
i (My, My) ~ M,

correspond to removing a detour that consists of
(A7) followed by (Ae):

- Py - Dy
A B X
A, A A, AQZ ~A
A;

Reduction and proofs

Conversions of the form
(Ax: ALN)L ~ N|L/x|

correspond to removing a detour that consists of
(— 1) followed by (— e):

Al |
X Y
A— B . B

A \

B

Adding disjunction

The type corresponding to A v B Is commonly
written as A + B. The rules for + are

I'-M:A _ I'-M:B

. 2 ; +1
I'Fing(x) A+ B ['Fing(x) A+ B

I'-M:A+B TI'2:AF N, :C T,y:BF Ny :C
'+ case M of ing(x: A) = Np|ing(y : B) = Ny :C

+e.

Note the similarity with the ND rules for V.

	About the exam
	Past exams
	
	Overview
	The $lambda $-operator
	$lambda $-terms
	History of the $lambda $-calculus
	Pairing
	Types
	Contexts
	Typing judgments
	Typing rule for variables
	Typing rules involving $	o $
	Example
	Example
	Typing rules involving $	imes $
	The simply-typed $lambda $-calculus
	{Large Typing rules of the simply-typed $lambda $-calculus}
	Propositions as types
	Significance
	Inhabited types and validity
	Example
	Towards conversion
	Conversion
	Reduction
	Reduction and proofs
	Reduction and proofs
	Adding disjunction

