
About the exam
The lecture after this one will be revision.

I will present some hints, exercises, and

model solutions.

Also relevant: the exercises on my slides.

. – p.1/28

Past exams
It is worth looking at the exams of the last two years
(Prof. Pym): enter

http://www.bath.ac.uk/library/exampapers/search.html

and search for comp0071.

Relevant questions are Q1 and Q2 in the 2002 exam,
and all questions in the 2003 exam.

I did not do Bunched Logic, but Hoare logic instead.

There will be some exercises where you are asked to
find natural deduction proofs and sequent proofs for
given formulæ or sequents.

. – p.2/28

http://www.bath.ac.uk/library/exampapers/search.html

The λ-calculus & the

Propositions-as-Types paradigm

. – p.3/28

Overview
We shall introduce the famous λ-calculus,
which was originally invented as a notation for
computable functions and later became the
basis of functional programming.

We shall study a surprising connection
between λ-calculus and logic.

This connection is called the
Propositions-as-types paradigm.

. – p.4/28

The λ-operator
We write

λx.M

for the function that takes an x and returns the value
described by the term M .

Examples:

λx.x ∗ 2. is the function that doubles its argument.

F = λx.λy.x ∗ y is the function that, given x, returns a
function that, given y, returns x ∗ y. E.g., F (2) is the
doubling function above.

. – p.5/28

λ-terms
The syntax of the untyped λ-calculus is given
as follows:

Variables: x, y, . . .

Constants: c, d ::= + | ∗ | 0 | 1 | 2 . . .

λ-terms: M,N ::= λx.M |MN |x | c

MN stands for the application of the “function” M to the

argument N (i.e. for what is often written as M(N)).

The infix notation x ∗ y we used is just a nice-looking

notation for the λ-term ((∗x) y).

. – p.6/28

History of the
λ-calculus

Introduced by A. Church in the 1930’s as a
notation for computable functions, in the
context of studying the foundations of
mathematics.

In the 1950’s, became the basis of real-life
programming languages based on it, e.g.
LISP. (LISP actually has the keyword
“lambda”.)

Since the 1960’s, key tool in
programming-language theory.

. – p.7/28

Pairing

The λ-calculus is often extended with

pairing terms of the form (M,N), and

projection terms of the forms π1(M), π2(M).

E.g., the term

λx.λy.(π1(x), y)

takes an argument x (which is a pair), and then an

argument y, and returns the pair whose second

component is y, and whose first component is the

first component of x. . – p.8/28

Types

λ-terms are often given types. Types are given
by the following grammar:

A,B ::= A → B (function types)

A × B (product types,

i.e., types of pairs)

int , nat , bool , . . . (atomic types).

E.g., a possible type of λf.λg.λx.(fx) − (gx) is

(nat → int) → ((nat → int) → (nat → int)).

. – p.9/28

Contexts
To give types to variables, we introduce
contexts.

Definition. A context Γ is a finite sequence

x1 : A1, x2 : A2, . . . , xn : An

where xi is a variable and Ai is a type for every i,

and the xi are mutually different.

. – p.10/28

Typing judgments
We shall introduce judgments of the form

Γ ` M : A,

where Γ is a context, M is a λ-term, and A is a type.

The intended meaning is

“In context Γ, M has type A.”

In the special case where Γ is empty, we say that M

inhabits the type A.

` M : A

. – p.11/28

Typing rule for
variables

The typing rule for variables is

if x :A is in Γ Ax
Γ ` x :A

Note the similarity with the Ax rule in natural de-

duction.

. – p.12/28

Typing rules
involving →

Γ ` M :A → B Γ ` N :A
→ e

Γ ` MN :B

Γ, x :A ` M :B
→ i

Γ ` λx : A.M :A → B

(The “: A” after “λx” is only needed to preserve
the knowledge that x has type A.)

Note the similarity with the ND rules for →.

. – p.13/28

Example
Q: Is there a λ-term M that inhabits the type

A → ((A → B) → B)?

A: Yes: M = λx : A.λf : A → B.fx. To see this, consider

the typing derivation below.

Ax
x :A, f :A → B ` f :A → B

Ax
x :A, f :A → B ` x :A

→ e
x :A, f :A → B ` fx :B

→ i
x :A ` λf : A → B.fx :(A → B) → B

→ i.
` λx : A.λf : A → B.fx :A → ((A → B) → B)

. – p.14/28

Example
Q: Is there a λ-term N that inhabits the type

(((A → B) → B) → B) → (A → B)?

A: Yes:

N = λh : ((A → B) → B) → B.λx : A.h(Mx),

where M is the term from the previous slide.

. – p.15/28

Typing rules
involving ×

Γ ` M :A Γ ` N :B
×i

Γ ` (M,N) :A × B

Γ ` M :A × B
×e

Γ ` π1(M) :A
Γ ` M :A × B

×e
Γ ` π2(M) :B

Note the similarity with the ND rules for ∧.

. – p.16/28

The simply-typed
λ-calculus

Definition. The formal system of judgments

Γ ` M : A

that are derivable using the rules Ax , → i, → e,

×i, and ×e is called the simply-typed λ-calculus
(with atomic types, function types, and product

types).

. – p.17/28

Typing rules of the
simply-typed λ-calculus

if x : A is in Γ Ax
Γ ` x :A

Γ ` M : A Γ ` N : B
×i

Γ ` (M,N) : A × B

Γ ` M : A × B
×e

Γ ` π1(M) : A

Γ ` M : A × B
×e

Γ ` π2(M) :B

Γ ` M : A → B Γ ` N A
→ e

Γ ` MN : B

Γ, x : A ` M : B
→ i

Γ ` λx : A.M :A → B

. – p.18/28

Propositions as
types

Erasing the λ-terms and reading × as ∧
yields intuitionistic ND for ∧ and →. (As we
shall see, this can be extended to ∨.)

So, terms of the simply-typed λ-calculus are
in perfect correspondence with ND-proofs in
intuitionistic propositional logic!

This is called the Propositions-as-Types
paradigm (a.k.a. “Curry-Howard
isomorphism”), because it shows that
propositions (= formulæ) and types are
essentially the same.

. – p.19/28

Significance

Because λ-terms can be seen as functional
programs, we have correspondence between
programs and proofs.

The scope of the Propositions-as-Types
paradigm goes beyond the logics and
λ-calculus considered in this lecture.

It has had a great impact on the design of
programming languages, causing a transfer
of design principles between logics and
programming languages (see e.g. ML).

. – p.20/28

Inhabited types and
validity

Owing to the Propositions-as-Types paradigm,
we know:

Proposition. For every type A, the following are
equivalent:

1. A, viewed as a formula, is provable in
intuitionistic ND (and therefore valid in
intuitionistic logic).

2. A is inhabited by a term of the simply-typed
λ-calculus.

. – p.21/28

Example

We know e.g. that the formula

((A → B) → B) → A

is not generally inhabited by a λ-term. For in the
case B = ⊥, we get

((A → ⊥) → ⊥) → A,

which is essentially RAA and not valid for all A in

intuitionistic logic.

. – p.22/28

Towards conversion
Consider how we evaluate λ-terms, e.g.

((λx : nat .λy : nat .π1(x, y)) 2) 3

(see lecture). The sequence of evaluation steps

can be seen as the execution of a program.

. – p.23/28

Conversion

Definition. A term M converts to a term M ′ if
one of the following three cases holds:

M = π1(M1,M2) M = π2(M1,M2) M = (λx : A.N)L

M ′ = M1 M ′ = M2 M ′ = N [L/x]

where N [L/x] is the term that results from N by

replacing every free occurrence of x by the term

L. The term M is called the redex, and M ′ is

called the contractum.

. – p.24/28

Reduction

Definition. A term M reduces to a term N if
there is a sequence of conversions from M to N ,
i.e., a sequence

M = M0,M1, . . . ,Mn = N

such that for i = 0, 1, . . . , n − 1, Mi+1 is obtained

by replacing a redex by its contractum. We write

M ; N .

. – p.25/28

Reduction and proofs

Conversions of the form

πi(M1,M2) ; Mi

correspond to removing a detour that consists of
(∧i) followed by (∧e):

··· Φ1

A

··· Φ2

B
∧i

A1 ∧ A2 ∧e
Ai

;

··· Φi.
Ai

. – p.26/28

Reduction and proofs

Conversions of the form

(λx : A.N)L ; N [L/x]

correspond to removing a detour that consists of
(→ i) followed by (→ e):

[A]
··· Φ
B

→ i
A → B

··· Ψ
A
→ e

B

;

··· Ψ
A
··· Φ.
B

. – p.27/28

Adding disjunction

The type corresponding to A ∨ B is commonly
written as A + B. The rules for + are

Γ ` M :A
+i

Γ ` in1 (x) :A + B

Γ ` M :B
+i

Γ ` in2 (x) :A + B

Γ ` M :A + B Γ, x :A ` N1 :C Γ, y:B ` N2 :C
+e.

Γ ` case M of in1 (x : A) ⇒ N1 | in2 (y : B) ⇒ N2 :C

Note the similarity with the ND rules for ∨.

. – p.28/28

	About the exam
	Past exams
	
	Overview
	The $lambda $-operator
	$lambda $-terms
	History of the $lambda $-calculus
	Pairing
	Types
	Contexts
	Typing judgments
	Typing rule for variables
	Typing rules involving $	o $
	Example
	Example
	Typing rules involving $	imes $
	The simply-typed $lambda $-calculus
	{Large Typing rules of the simply-typed $lambda $-calculus}
	Propositions as types
	Significance
	Inhabited types and validity
	Example
	Towards conversion
	Conversion
	Reduction
	Reduction and proofs
	Reduction and proofs
	Adding disjunction

