Intuitionistic logic



Motivation for
Intuitionistic logic

= As hinted earlier, proof by contradiction (RAA)
IS contentious.

m As shown before, (RAA) Is interderivable with
the law of the excluded middle

A oA LM

= We shall now see an example why LEM (and
therefore RAA) Is contentious.




Motivation for
Intuitionistic logic

Proposition. There exist two irrational numbers
a, b such that a’ is rational.



Constructivism

= The proof we have seen Is deemed to be not
constructive.

m An attack on the law of the excluded middle
was launched by the famous
mathematician-logician L.E.J. Brouwer in the
early 1900’s.

m Brouwer’s mathematics and logics are called
Intuitionistic.
In this context, the traditional non-constructive
mathematics and logics are called classical.
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Heyting
Interpretation

m The idea In constructive logic Is that we can
only consider a statement to be true If we
have a proof for it.

m This idea Is made precise by Heyting’s
iInterpretation of proofs:



Heyting
Interpretation

m A proof of A A B is a pair (¢, V) where ¢ is a
proof of A and V¥ Is a proof of B.

m A proof of AV B Is a proof of A or a proof of
B.

m A proof of A — B Is a method for turning a
proof of A into a proof of B.

m A proof of Vx.A I1s a method for turning any
witness ¢, into a proof of At/x].

m A proof of dz. A consists of a withess ¢t and a
proof ® of Alt/x]|.



ND and Heyting

The gist of the Heyting interpretation is captured
by the natural deduction rules minus RAA:



ND and Heyting

L
BA,
AnB
| d
AAB AAB
(&
A B

Interpretation: A

Given a proof ® of A and a
proof ¥ of B, we have a proof
of AN B.

Given a proof & of A A B, we
have a proof of A and a proof
of B.

So, to have a proof of A A B is to have a proof of A and a

proof of B.
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ND and Heyting
Interpretation: —

éq) Given a method @ for turning a
T i proof of A into a proof of B, we
have a proof of A — B.
¢ v
A—:>B A Given a proof ® of A — B, we
I > € have a method for turning any

proof ¥ of A into a proof of B.

So, to have a proof of A — B is to have a method for turning

any proof of A into a proof of B.
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ND and Heyting
Interpretation: V

A Given a proof of A for an arbitrary «
VoA Vi (i.e., a method for proving A[t/z] for
any t), we have a proof of Vz. A.

Ve A Given a proof of Vz.4, we have a
Alt/7] Ve  method for proving of Alt/x] for any
L.

(Warning: the side conditions are omitted in the above pre-
sentation of the rules.) So, to have a proof of Vx.A Is to have

a method for proving Alt/x] for any t.



ND and Heyting
Interpretation: Vv

B Given a proof of & of A (or of
Vi VB Vi B), we have a proof of AV B.

i Al B
- Uy Uy
AV B o o Given a proof ¢ of AV B and
- Ve methods V¥, resp. ¥, for turn-

Ing proofs of A resp. B into
proofs of C', we have a proof
of C.
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The disjunction
property

m Introduction and elimination rules for vV do not
iImply the disjunction property, which states
that

f-AvV B,then+ Aork B.

m To see this, note that in classical propositional
logic, we have neither - p nor = —p for an
atomic formula p.

m But the disjunction property holds for
Intuitionistic logic, as we shall see later.



ND and Heyting
Interpretation: -

()
A[tz/x] Given a proof ® of Ajt/x] for some wit-
Jr A i ness t, we have a proof of dz. A.
4]
Jr A B Given a proof ® of A[t/x|, and a method
. B de for turning a proof of A (for arbitrary x)

Into a proof of B, we get a proof of B.

(Warning: the side conditions are omitted in the above pre-

sentation of the rules.)
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The existence
property

m [ntroduction and elimination rules for 4 do not
Imply the existence property, which states
that

if - dx. A, then - A[t/x| for some .

m But the existence property holds for
Intuitionistic logic.



Ex falso quodlibet

The elimination rule for L is contentious, but not as
contentious as RAA. (As seen earlier, RAA implies _Le; the
converse is false, as we shall see.)

)
i If ® is a proof of a contradiction , we

1 le are allowed to turn this into a proof of
any formula A.

This rule is allowed in intuitionistic logic, but not in minimal

logic.
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Summary of ND for IL

For simplicity, we shall focus on propositional

logic.
A B ANAB ANAB
A1 Ne Ne
ANAB A B
[4]  [B]
A B . 1
V1 V1 — le
AV B AV B Ave ¢ C A
Ve
C
[A]
I A—-B A
. Ny
B B
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PHA TEB . THAAB — THAAB
TEAAB rFa ¢ T B

' A . I'-B .
V1 V1
I'-Av B I'-Av B

I'-rAvB TI'AFC T,BrFC 'L
Ve —— e
I'=cC ' A

I'AFB  TFA-B THA
rcA-nB " T'F B
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Semantics of IL?

m[' Ais provable in ND for classical
propositional logic Iff I' = A In the sense of
the truth-table semantics.

m The absence of RAA from IL suggests that IL
proves fewer judgments I' - A, and Is
therefore incomplete w.r.t. the truth-table
semantics.

m IS there a semantics w.r.t. which IL 1S
complete?



Kripke models of IL

Remarkably, a variation of Kripke models for
modal logic also works for IL. Three changes are
enough:

1. The accessibility relation R Is a preorder, I.e.
reflexive and transitive. We shall write <
Instead of R.

2. The labelling function is required to be
monotonic, i.e. L(x) C L(y) whenever x < y.

3. We shall need to change the forcing
semantics of implication.



Heuristic motivation

®m An idealized mathematician (traditionally called the
“creative subject”) explores the possible worlds.

® The preorder can be seen to describe (branching)
time: z < y means that world y is later than world =.

® The mathematician can only move forward in time,
along the way, she discovers true facts.

m If she knows a fact to be true at world x, she also
knows it to be true in any later world. (That explains
why the labelling function is monotonic.)
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Kripke models for IL

Definition. A (Kripke) model of propositional IL
consists of

1. a set W, whose elements are called worlds:
2. a preorder < on W,

3. a monotonic labelling function
L:W — P(Atoms).



Semantics of A, Vv, L

The semantics of A, Vv, L, and of atomic
formulee, Is the same as in basic modal logic:

riFAANB iff zxlFAandzlF B
riFAVB iff zlFAorxl-B
xlff L
rlFp iff pe L(x)



Semantics of —

m One can know A — B to be true without
Knowing whether A or B are true.

m However, it does not suffice to look only at the
oresent world: one must know that no later
discovery can make A — B false.

This motivates the following semantics of —:

rIFA—B Iff forallywithax <y, ifylF A
then y IF B.



Semantics of —:
discussion

Let x be a world, and let p and ¢ be atomic
formulee.

1. If gI1strue at x, then z IF p — q.
2. If pistrue and q Is false at x, then x I p — q.

3. If both p and ¢ are false at x, we must look
Into the future.



Semantics of —
As before, we define
-A=(A— 1).

Thus
rIF—-A Iff forall ywithz <y we have y I A.

That is, we know —A If A never becomes true.



Double negation

Lemma. In every Kripke model for IL, it holds for
every world x that

rlF——A
If and only If

for all y > x there is a z > y such that z I A.

Proof. See lecture.



Some non-valid
formulae

The following formulae, which are valid In
classical logic, are not valid in IL:

lL.==p—p

2. pV —p

3. ~(pAq)— (—pV —q)
4. (p—q) — (—pVq).
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