
Sequent calculus,
proof search,

& logic programming

. – p.1/??

Deductive vs.
reductive inference

Deductive inference proceeds from
premises to a conclusion:

premise1 . . . premisen ⇓
conclusion

Reductive inference proceeds backwards
from a putative conclusion or goal sequent to
sufficient sets of premises:

premise1 . . . premisen ⇑
putative conclusion

. – p.2/??

Proof search
We call reductive inference proof search.

There can be many choices for reducing a
goal sequent. E.g. the goal sequent below
could be reduced in five ways.

A ∧ B,C → (D → E), (A ∧ C) → E ` E ∨ B,B → D

So we have a search space: all possible
attempts at reducing the goal sequent.

. – p.3/??

Opting for additive
rules

For proof search, additive rules are better than multiplicative

rules. For example, given the goal sequent

Γ ` A ∧ B,∆,

applying additive R∧ backwards yields

Γ ` A,∆ Γ ` B,∆,

while applying multiplicative R∧ yields

Γ1 ` A,∆1 Γ2 ` B,∆2

for any splitting of Γ = Γ1,Γ2 and ∆ = ∆1,∆2. Evidently, we

better avoid having to choose such a splitting. . – p.4/??

Avoiding cut

The cut rule is bad for proof search, because it
violates the subformula property. E.g., applying
(additive) cut backwards to

Γ ` ∆

yields the new goal sequents below:

Γ ` A, ∆ Γ, A ` ∆.

Evidently, we better avoid having to guess A. For-

tunately, owing to the cut-elimination theorem, we

can prove everything without cut! . – p.5/??

Search space still too
big

But even without cut and with only additive
rules, the search space turns out too big for
realistic proof search.

The reason is the number of choices for
picking the principle formula. E.g. recall that

A ∧ B,C → (D → E), (A ∧ C) → E ` E ∨ B,B → D

provides five choices!

. – p.6/??

Towards logic
programming

Logic programming limits the search-space by
focusing on sequents Γ ` A with a single
succedent A. We write

Γ ?− A

A is called the goal formula of simply goal.

Γ is called the program, because it provides
the instructions for proving A, as we shall see.

?− stands for the inference engine. (E.g.
Prolog).

. – p.7/??

Sequent calculus for
proof search

Logic programming is best discussed in the
context of an additive, cut-free,
single-succendent sequent calculus.

It helps to consider contexts Γ to be sets of
formulæ, not lists.

This corresponds to making the rules
LE,RE,LC,RC implicit.

The rule WR no longer makes sense,
because of single succedents.

WL is not an inference rule, but it is derivable.
. – p.8/??

The “minimal
sequent calculus”

Ax

Γ, A ` A

Γ, A, B ` C
L∧

Γ, A ∧ B ` C

Γ ` A Γ ` B
R∧

Γ ` A ∧ B

Γ, A ` C Γ, B ` C
L∨

Γ, A ∨ B ` C

Γ ` Ai

(i = 1, 2)R∨

Γ ` A1 ∨ A2

Γ ` A Γ, B ` C
L →

Γ, A → B ` C

Γ, A ` B
R →

Γ ` A → B

Γ, A[t/x] ` B
L∀

Γ,∀x.A ` B

Γ ` A
R∀

Γ ` ∀x.A

Γ, A ` B
L∃

Γ,∃x.A ` B

Γ ` A[t/x]
R∃

Γ ` ∃x.A
. – p.9/??

Completeness?

This calculus is not complete w.r.t. the usual
semantics of predicate logic!

However, only two rules are missing:

Γ ` ⊥
ex falso quodlibet

Γ ` A

Γ,¬A ` ⊥
RAA.

Γ ` A

In fact, RAA implies EFQ.

The calculus without these two rules is for
minimal logic.

The calculus without RAA but with EFQ is for
intuitionistic logic. More about this later.

. – p.10/??

Uniform proofs

Logic programming constrains the search
space outlined by the minimal sequent
calculus even more.

This can be explained elegantly in terms of
uniform proofs (Dale Miller et. al.).

The idea is that the goal is taken to pieces (by
right rules) as long as possible; left rules are
applied only when the goal is atomic.

. – p.11/??

Uniform proofs:
definition

Definition. A proof in the minimal sequent calcu-

lus is uniform if every sequent Γ ` A with non-

atomic succedent A is obtained from a right rule.

. – p.12/??

Completeness?

Problem: uniform proofs are not even
complete for the minimal sequent calculus
(consider e.g. p ∨ q ` p ∨ q).

Solution: characterize a class of sequents for
which uniform proofs are complete.

. – p.13/??

Hereditarily Harrop
sequents

Definition. A Hereditarily Harrop sequent is of
the form

D1, . . . , Dn ` G,

where the D’s (definite clauses) and G (goal)
obey the grammar

D ::= ⊥|p|G → p|G → ⊥|∀x.D|D1 ∧ D2

G ::= ⊥|p|G1 ∧ G2|G1 ∨ G2|∃x.G|D → G.

. – p.14/??

Prolog as a special
case of HH sequents

mortal(X) :- human(X).

featherless(socrates).

bipedal(socrates).

animal(socrates).

human(X) := featherless(X),

bipedal(X), animal(X).

This corresponds to the following set Γ of definite clauses
(note the ∀-quantifier):

∀x.human(x) → mortal(x), featherless(socrates),

bipedal(socrates), animal(socrates),

∀x.featherless(x) ∧ bipedal(x) ∧ animal(x) → human(x)
. – p.15/??

Prolog as a special
case of HH sequents

By contrast, a Prolog query, e.g.
?- featherless(X),bipedal(X),animal(X)

corresponds to the goal (note the ∃-quantifier):

∃x.featherless(x) ∧ bipedal(x) ∧ animal(x)

. – p.16/??

Prolog as a special
case of HH sequents

So a query to Prolog program can be considered
as a special case of a HH sequent

D1, . . . , Dn ` G

where

each Di is of the form
∀x1. . . . ∀xn.(p1 ∧ . . . ∧ pk → q), where the pi

and q are atomic, and

G is of the form ∃x1. . . . ∃xn.r1 ∧ . . . ∧ rm,
where the ri are atomic.

. – p.17/??

Lambda-prolog

The full power of HH sequents is
implemented in Lambda-Prolog.

In particular, it allows goals of the form
D → G.

D can be seen as code to be loaded prior to
proving G.

. – p.18/??

Completeness of
uniform proofs

Theorem. Uniform proofs of Hereditarily Harrop

sequents are complete w.r.t. minimal predicate

logic.

Proof. By re-writing proofs in the minimal

sequent calculus into uniform proofs.

. – p.19/??

Towards resolution
Suppose our goal sequent is

Γ,∀x.G(x) → p(x) ` ∃x.q(x),

where p and q are atomic, and there is a term t
such that p(t) = q(t). Then, by uniform proof, we
can reduce the goal sequent to Γ ` G(t):

···
Γ ` G(t)

Ax
Γ, p(t) ` q(t)

L →
Γ, G(t) → p(t) ` q(t)

L∀
Γ,∀x.G(x) → p(x) ` q(t)

R∃
Γ,∀x.G(x) → p(x) ` ∃x.q(x) . – p.20/??

Resolution
In other words, to prove

D1, . . . , Dn ` ∃x.q(x),

find a Di of the form

Di = ∀x.G(x) → p(x)

and a term t such that p(t) = q(t). Then it suffices

to prove D1, . . . , Dn ` G(t). Such a t can be found

by unification; Prolog essentially works in that

way (recall CM20019).
. – p.21/??

Completeness of
resolution

A resolution proof is a uniform proof such that
existential goals ∃x.A are treated as we just
described. (The precise description is a bit more
complicated, because A need not be atomic.)

Theorem. Resolution proofs of HH formulæ are

complete w.r.t. minimal predicate logic.

Proof. By showing that every uniform proof

can be re-written into a resolution proof.
. – p.22/??

	
	Deductive vs. reductive inference
	Proof search
	Opting for additive rules
	Avoiding cut
	Search space still too big
	Towards logic programming
	Sequent calculus for proof search
	The 	heword {minimal sequent calculus}
	Completeness?
	Uniform proofs
	Uniform proofs: definition
	Completeness?
	Hereditarily Harrop sequents
	Prolog as a special case of HH sequents
	Prolog as a special case of HH sequents
	Prolog as a special case of HH sequents
	Lambda-prolog
	Completeness of uniform proofs
	Towards resolution
	Resolution
	Completeness of resolution

