
Hoare logic

– p. 1/43

Hoare logic

Hoare logic (Hoare, 1969) is a logic to check
properties of sequential, state-transforming
programs. (“Sequential” means that there is no
parallelism or concurrency during the execution.)

– p. 2/43

Hoare triples

The logic is based on Hoare triples

([φ])C([ψ])

where C is a program (also called
“command”) and φ and ψ are logical formulæ.

φ is called the precondition and ψ is called
the postcondition of C.

Remark: while studying Hoare logic, we shall use
Greek letters φ, ψ, . . . to denote formulæ, to be
compatible with Huth/Ryan.

– p. 3/43

An idealized prog.
language

We shall focus on an idealized imperative
sequential programming language, which is

sufficiently big to show that our study is
realistic, and

sufficiently small to allow an easy treatment.

Using idealized programming languages is a key
technique in programming-language theory.

– p. 4/43

Expressions and
commands

Our programming language is essentially
contained in Java, C, Pascal, and so on. It has
three syntactic domains:

integer expressions,

boolean expressions, and

commands (also called programs).

– p. 5/43

Integer expressions

Integer expressions are built in the familiar
way from variables x, y, z, . . ., integers, and
basic operations like + and ∗, e.g.

7

− 5

x

4 + (y − 3)

– p. 6/43

Grammar of integer
expressions

The grammar (in Backus-Naur form) of
integer expressions is

E ::= n |x | (−E) | (E + E) | (E − E) | (E ∗ E),

where n ∈ {. . . ,−2,−1, 0, 1, 2, . . .} and x is
any variable.

– p. 7/43

Boolean expressions

The grammar of boolean expressions is

B ::= true |false | (!B) | (B&B) | (B||B) | (E < E)

| (E == E) | (E! = E)

where ! stands for negation, & for conjunction, ||
of disjunction, == for equality, and ! = for
inequality.

– p. 8/43

Commands

The commands we consider are given as follows:

C ::= x = E |C;C

|ifB then {C}else{C} |whileB {C}

Example:

y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}
– p. 9/43

Semantics of
commands

The intuitive meaning of the programming
constructs is described on the following slides.

– p. 10/43

Assignment

The atomic command

x = E

is the usual assignment statement; it evaluates
the integer expression E in the current state of
the store and then overwrites the current value
stored in x with the result of the evaluation.

– p. 11/43

Sequential
composition

The compound command

C1;C2

is the sequential composition of the commands
C1 and C2. It begins by execution C1. If that
execution terminates, then it executes C2 in the
state resulting from the execution of C1. If the
execution of C1 does not terminate, then neither
does C1;C2.

– p. 12/43

If-statements

The statement

ifB then {C1}else{C2}

first evaluates the boolean expression B in the
current state; if the result is true, then C1 is
executed; it the result is false, then C2 is
executed.

– p. 13/43

While-loops

The construct

whileB {C}

means that:

1. the boolean expression B is evaluated in the
current state;

2. if B evaluates to false, then the while-loop
terminates;

3. if B evaluates to true, then C will be
executed. If the execution of C terminates, we
go back to Step (1).

While-statements are the only source of

– p. 14/43

Example of
semantics: factorial

The factorial n! of a natural number n is defined
inductively by

0! = 1

(n+ 1)! = (n+ 1) · n!.

For example,

4! = 4 · 3! = . . . = 4 · 3 · 2 · 1 · 0! = 24.

The next slide contains a program for computing
the factorial of x.

– p. 15/43

Example: factorial

The program Fac1 below is intended to compute
the factorial of x and to store the result in y. We
shall prove later—using Hoare logic—that Fac1
really does this.

y = 1;

z = 0;

while (z != x) {

z = z + 1;

y = y * z;

}

– p. 16/43

Partial correctness
vs. total correctness

There are two readings for a Hoare triple
([φ])C([ψ]):

Partial correctness: if the initial state
satisfies φ and C is executed and terminates,
then the resulting state satisfies ψ. We write

|=par ([φ])C([ψ]).

Total correctness: if the initial state satisfies
φ, then C terminates and the resulting state
satisfies ψ. We write

|=tot ([φ])C([ψ]).
– p. 17/43

On the meaning of |=

Note that |=par and |=tot are not exactly in the

same spirit as |= in propositional logic or
predicate logic.

Hoare logic is the only logic where we deviate
from our usual use of |=, to be compabtible
with old literature.

There is a more modern version,
Hennessy-Milner logic that introduces the
“right” notion of |=.

I’ll explain this briefly after we’ve seen Hoare
logic.

– p. 18/43

Partial correctness
vs. total correctness

Note that total correctness implies partial
correctness.

However, it often happens that partial
correctness is proved first, and total
correctness in a second step.

– p. 19/43

Two versions of
Hoare logic

We shall present two versions of Hoare logic:

First, we shall present Hoare logic for partial
correctness. If a triple is derivable in that
logic, we shall write

⊢par ([φ])C([ψ]).

Then we shall modify it to obtain a Hoare
logic for total correctness. If a triple is
derivable in that logic, we shall write

⊢tot ([φ])C([ψ]).

– p. 20/43

Soundness and
completeness

Soundness for partial correctness means

⊢par ([φ])C([ψ]) implies |=par ([φ])C([ψ]).

Completeness for partial correctness means

|=par ([φ])C([ψ]) implies ⊢par ([φ])C([ψ]).

Similarly for total correctness.

– p. 21/43

Soundness and
completeness

We shall prove soundness (in a slighty
informal way) as we go along.

Completeness holds, but the proof is beyond
the scope of this course.

– p. 22/43

The shape of
formulæ

Recall Hoare triples are of the form

([φ])C([ψ]).

Which shape have the formulæ φ, ψ?

To answer this question, it is useful to take a
peek at an inference rule of Hoare logic.

– p. 23/43

The rule for
if-statements

([φ ∧B])C1([ψ]) ([φ ∧ ¬B])C2([ψ])
If-statement

([φ])ifB then {C1}else{C2}([ψ])

– p. 24/43

The shape of the
formulæ

We continue with our quest for the shape of
formulæ:

The If-statement rule shows that boolean
expressions from the programming language
need to be imported into the language of
formulæ!

([φ ∧B])C1([ψ]) ([φ ∧ ¬B])C2([ψ])
If-statement

([φ])ifB then {C1}else{C2}([ψ])

– p. 25/43

The shape of the
formulæ

Boolean expressions in turn involve integer
expressions:

B ::= true | . . . | (B&B) | (B||B)

| (E < E) | (E == E) | (E! = E)

– p. 26/43

The shape of the
formulæ

So the formulæ used in Hoare logic look like
formulæ of predicate logic, over a signature
whose

function symbols are the operations +, ∗,
−,. . . of the programming language (so terms
in the sense of predicate logic are the same
as the integer expressions of the
programming language), and whose

relation symbols <, =, 6=, . . . are only different
notations for the operations <, ==, ! =, . . . of
the programming language.

– p. 27/43

The shape of the
formulæ

So the atomic formulæ are essentially the
same as boolean expressions of the
programming language).

The boolean connectives ∧,∨,¬, . . . are only
different notations for the operations &, ||, !, . . .
of the programming language.

– p. 28/43

Rules for partial
correctness

([φ])C1([η]) ([η])C2([ψ])
Composition

([φ])C1;C2([ψ])

Assignment
([ψ[E/x]])x = E([ψ])

([φ ∧B])C1([ψ]) ([φ ∧ ¬B])C2([ψ])
If-statement

([φ])ifB then {C1}else{C2}([ψ])

([ψ ∧B])C([ψ])
Partial-while

([ψ])whileB {C}([ψ ∧ ¬B])

⊢ φ′ → φ ([φ])C([ψ]) ψ → ψ′

Implied
([φ′])C([ψ′])

– p. 29/43

The rule for
composition

The inference rule for composition looks as
follows:

([φ])C1([η]) ([η])C2([ψ])
Composition.

([φ])C1;C2([ψ])

Thus, if C1 takes φ-states to η-states, and C2

takes η-states to ψ-states, then running C1

followed by C2 takes φ-states to ψ-states.

– p. 30/43

The rule for
assignment

Inference rule for assignment:

Assignment
([ψ[E/x]])x = E([ψ])

Rationale behind this rule:

If the initial state is s, then the state s′ after
the assignment is like s, except that the
variable x has now value E. Let us write

s′ = s[x 7→ E].

If s′ is to satisfy ψ, then which formula φ must
s satisfy? Answer: φ = ψ[E/x].

– p. 31/43

Partial correctness of
while-statements

The rule for the partial correctness of while-loops
looks as follows:

([ψ ∧ B])C([ψ])
Partial-while

([ψ])whileB {C}([ψ ∧ ¬B])

The idea is that we have to find some invariant
ψ, i.e. some formula that does not change during
the execution of C (even if the state changes).

– p. 32/43

The rule “Implied”

⊢ φ′ → φ ([φ])C([ψ]) ⊢ ψ → ψ′

Implied
([φ′])C([ψ′])

This rule allows the precondition to be
strengthened (i.e. to assume more than
necessary) and the postcondition to be
weakened (i.e. to conclude less then
possible).

It allows to import proofs from predicate logic
into the proofs of program logic.

– p. 33/43

A space issue

Unfortunately, even proofs for the partial
correctness of small programs do not fit on one
page. For example, an attempt to verify Fac1
yields the proof below:

gets even wider
·
·
·

([⊤])y = 1; z = 0([y = 1 ∧ z = 0])

gets even wider
·
·
·

([y = 1 ∧ z = 0])while (z 6= x) {z = z + 1; y = y ∗ z}([y = x!])
.

([⊤])y = 1; z = 0; while (z 6= x) {z = z + 1; y = y ∗ z}([y = x!])

Proofs get too wide, and a lot of information is
copied from one line to the next.

– p. 34/43

Tableaux

To make Hoare logic easier to use, we introduce
a different presentation called tableaux. We
think of a program as a sequence

C1;

C2;

...

Cn

where each of the Ci is either an assignment, an
if-statement, or a while-statement.

– p. 35/43

Tableaux in logic

Tableaux are ways of presenting of proofs
that are optimized for ease of use.

There are different of tableaux methods for
different logics.

For example, tableaux for predicate logic (as
seen in second-semester course) are very
different from the ones for Hoare logic we are
now studying.

– p. 36/43

Sequences of triples

Let C stand for the program C1;C2; . . . ;Cn.
Suppose that we want to show

([φ0])C([φn]).

By the Composition rule, it suffices to prove
the triples below for suitable φ1, φ2, . . . , φn−1.

([φ0])C1([φ1]), ([φ1])C2([φ2]), . . . , ([φn−1])Cn([φn])

– p. 37/43

Interleaving formulæ
with code

This suggest that we should design a calculus
which presents a proof of ([φ0])C([φn]) by
interleaving formulas with code as in

([φ0])

C1;

([φ1]) justification

C2;
...

([φn−1]) justification

Cn;

([φn]) justification.
– p. 38/43

Midconditions

The formulæ φ1, . . . , φn−1 are called
midconditions.

Each of the steps

([φi])

Ci+1;

([φi+1])

will appeal to the If-statement rule, or the
Partial-while rule, or the Assignment rule,
depending on Ci+1.

– p. 39/43

Weakest
preconditions

Because the Assignment rule works upward,
it is most convenient to start with the final
condition φn and work upwards, using Cn to
obtain φn−1 and so on.

Getting φi from φi+1 and Ci+1 is mechanical
for assignments and if-statements; the φi so
obtained is the weakest precondition for
Ci+1 with postcondition φi+1.

That is, φi is the logically weakest formula
whose truth at the beginning of the execution
of Ci+1 is enough to guarantee φi+1.

– p. 40/43

Using tableaux

The tableau for ([φ])C1; . . . ;Cn([ψ]) is typically
constructed by starting at with the
precondition ψ and pushing it upwards
through Cn, then Cn−1, . . . , until a formula φ′

emerges at the top.

φ′ is a precondition which guarantees that the
postcondition ψ will hold if the program
terminates.

Finally, we check if φ′ follows from the given
precondition φ by using the “Implied” rule.

– p. 41/43

Using the “Implied”
rule in tableaux

The “Implied” rule allows us to write one
formula φ2 directly underneath another
formula φ1 (with no code in between), if φ1

implies φ2 in the sense of predicate logic.

When using the “Implied” rule, we shall not
write out the predicate-logic proof of φ1 ⊢ φ2,
because we focus on the program logic.

– p. 42/43

Example tableau

See blackboard.

We create the proof bottom-up.

For checking the proof, it also makes sense to
proceed top-down.

– p. 43/43

	Hoare logic
	Hoare triples
	An idealized prog. language
	Expressions and commands
	Integer expressions
	Grammar of integer expressions
	Boolean expressions
	Commands
	Semantics of commands
	Assignment
	Sequential composition
	If-statements
	While-loops
	Example of semantics: factorial
	Example: factorial
	Partial correctness vs. total correctness
	On the meaning of $models $
	Partial correctness vs. total correctness
	Two versions of Hoare logic
	Soundness and completeness
	Soundness and completeness
	The shape of formul{ae }
	The rule for if-statements
	The shape of the formul{ae }
	The shape of the formul{ae }
	The shape of the formul{ae }
	The shape of the formul{ae }
	Rules for partial correctness
	The rule for composition
	The rule for assignment
	Partial correctness of while-statements
	The rule 	heword {Implied}
	A space issue
	Tableaux
	Tableaux in logic
	Sequences of triples
	Interleaving formul{ae } with code
	Midconditions
	Weakest preconditions
	Using tableaux
	Using the 	heword {Implied} rule in tableaux
	Example tableau

