Hoare logic

Hoare logic

3

Hoare logic (Hoare, 1969) is a logic to check
properties of sequential, state-transforming
programs. (“Sequential” means that there is no
parallelism or concurrency during the execution.)

Hoare triples

m The logic is based on Hoare triples
(@)C (W)
where C'is a program (also called
“command”) and ¢ and ¢ are logical formulee.
m ¢ is called the precondition and ¢ is called
the postcondition of C.

Remark: while studying Hoare logic, we shall use
Greek letters ¢, 1), . .. to denote formulee, to be
compatible with Huth/Ryan.

3

An idealized prog.
language

We shall focus on an idealized imperative
sequential programming language, which is

m sufficiently big to show that our study is
realistic, and

m sufficiently small to allow an easy treatment.

Using idealized programming languages is a key
technique in programming-language theory.

Expressions and
: commands

Our programming language is essentially
contained in Java, C, Pascal, and so on. It has
three syntactic domains:

= integer expressions,
= boolean expressions, and
= commands (also called programs).

: Integer expressions

m Integer expressions are built in the familiar

way from variables z,y, z, .. ., integers, and
basic operations like + and x, e.g.

7

-5

xT

4+ (y—3)

Grammar of integer

: expressions

m The grammar (in Backus-Naur form) of
integer expressions is

E:=nlz|(—E)|(E+E)|(E—E)|(E*E),

wheren e {...,-2,-1,0,1,2,...} and z is
any variable.

: Boolean expressions

The grammar of boolean expressions is

B ::=true|false|(!B)|(B&B)|(B||B)|(E < E)
(B == B)|(B' =)

where ! stands for negation, & for conjunction, ||
of disjunction, == for equality, and ! = for
inequality.

: Commands

The commands we consider are given as follows:

C:= z=FE|CC
|if Bthen{C}else{C}|while B{C}

Example:
y 1;
z = 0;
while (z != x) {
z =z 1;
Yy =y * z;

Semantics of
: commands

The intuitive meaning of the programming
constructs is described on the following slides.

Assignhment

The atomic command
r=F

is the usual assignment statement; it evaluates
the integer expression E in the current state of
the store and then overwrites the current value
stored in = with the result of the evaluation.

Sequential
: composition

The compound command
C1; Co

is the sequential composition of the commands
Cy and Cs. It begins by execution C;. If that
execution terminates, then it executes C, in the
state resulting from the execution of C. If the
execution of ¢, does not terminate, then neither
does Cf; Cs.

: If-statements

The statement

if Bthen{C)}else{Cy}

first evaluates the boolean expression B in the
current state; if the result is t rue, then C} is
executed; it the result is false, then Cs is
executed.

: While-loops

The construct
while B{C}

means that:

1. the boolean expression B is evaluated in the
current state;

2. if B evaluates to false, then the while-loop
terminates;

3. if B evaluates to true, then C will be
executed. If the execution of C terminates, we
go back to Step (1).

Example of
semantics; factorial

The factorial n! of a natural number n is defined
inductively by

ol=1
(n+1)!'=(Mm+1) nl

For example,
41 =4.3=...=4-3-2-1-0! = 24.

The next slide contains a program for computing
the factorial of x.

: Example: factorial

The program Fac1 below is intended to compute
the factorial of = and to store the result in y. We
shall prove later—using Hoare logic—that Fac1
really does this.

y =1
z = 0;
while (z !'= x) {

z =2z + 1;
y =y * z;
}

Partial correctness
vs. total correctness

3

There are two readings for a Hoare triple
(@)C(D:
m Partial correctness: if the initial state
satisfies ¢ and C is executed and terminates,
then the resulting state satisfies). We write

Fpar (8)C ().

m Total correctness: if the initial state satisfies
¢, then C terminates and the resulting state
satisfies . We write

For (#)C (&)

On the meaning of =

3

= Note that |=,,, and =, are not exactly in the
same spirit as = in propositional logic or
predicate logic.

m Hoare logic is the only logic where we deviate
from our usual use of |=, to be compabtible
with old literature.

m There is a more modern version,
Hennessy-Milner logic that introduces the
“right” notion of |=.

m I'll explain this briefly after we’ve seen Hoare
logic.

Partial correctness
vs. total correctness

= Note that total correctness implies partial
correctness.

m However, it often happens that partial
correctness is proved first, and total
correctness in a second step.

3

Two versions of
Hoare logic

We shall present two versions of Hoare logic:

m First, we shall present Hoare logic for partial
correctness. If a triple is derivable in that
logic, we shall write

Fpar ()C ().

= Then we shall modify it to obtain a Hoare
logic for total correctness. If a triple is
derivable in that logic, we shall write

Fror (B)C ().

Soundness and
completeness

4

m Soundness for partial correctness means
Fpor (@)C([W) implies |=per (8)C ().
= Completeness for partial correctness means

Epor (O)C(0) implies Fpu (S)C ().

Similarly for total correctness.

4

Soundness and
completeness

m We shall prove soundness (in a slighty
informal way) as we go along.

m Completeness holds, but the proof is beyond
the scope of this course.

The shape of
formulee

m Recall Hoare triples are of the form

(e).

= Which shape have the formulae ¢, ¢?

m To answer this question, it is useful to take a
peek at an inference rule of Hoare logic.

4

The rule for
if-statements

(@A B)Ci(¥) (@A =B)Csr(¥)
(6)if Bthen (C1} else{Co}(y) Statement

The shape of the
: formulee

We continue with our quest for the shape of
formulae:

m The If-statement rule shows that boolean
expressions from the programming language
need to be imported into the language of
formulae!

¢ AB)CL([Y) (¢ A ~B)Ca(¥)
qi])if Bthen{Cy}else{Cs} (V) If-statement

The shape of the
: formulae

m Boolean expressions in turn involve integer
expressions:

B :=true|...|(B&B)|(B||B)
|(E<E)|[(E==E)|(E!'=E)

The shape of the
formulee

So the formulae used in Hoare logic look like
formulee of predicate logic, over a signature
whose

= function symbols are the operations +, *,
—,...of the programming language (so terms
in the sense of predicate logic are the same
as the integer expressions of the
programming language), and whose

mrelation symbols <, =, #, ... are only different
notations for the operations <, ==, ! =, ... of
the programming language.

The shape of the
: formulae

m So the atomic formulee are essentially the
same as boolean expressions of the
programming language).

m The boolean connectives A, V,—, ... are only
different notations for the operations &, ||,!,. ..
of the programming language.

Rules for partial
: correctness

(@)Ci(n) ([n)C»
([¢D Cr; Cy (W’D

(WIE/z])z = E(W)

¢ AB)C1(¥) (¢ A =B)Co(¥)
([g)])if Bthen {Cy}else{Cs} (V) If-statement

(v A B)C([Y)
(Y)while B{C}({y A —B)
Fd—¢ (ACE) v—v
(@)CW)

() Composition

Assignment

Partial-while

Implied

The rule for
: composition

The inference rule for composition looks as
follows:

(@)Ci(n) ([()C
(8)Cr; Co ()

Thus, if C} takes ¢-states to 7-states, and C,
takes n-states to 1-states, then running C;
followed by C, takes ¢-states to ¢-states.

(] Composition.

The rule for

: assignment

Inference rule for assignment:

Assignment

(W[E/2])z = E@)
Rationale behind this rule:

m If the initial state is s, then the state s after
the assignment is like s, except that the
variable = has now value E. Let us write

s = sz — EJ.

m [f ¢’ is to satisfy ¢, then which formula ¢ must
s satisfy? Answer: ¢ = Y[E/x].

Partial correctness of
: while-statements

The rule for the partial correctness of while-loops
looks as follows:

(¥ A B)C(¥)
(¥)while B{C}(¥ A —B)

The idea is that we have to find some invariant
1, i.e. some formula that does not change during
the execution of C' (even if the state changes).

Partial-while

: The rule “Implied”

F¢'—¢ (A)CW) Fy—d :
([¢/DC([1//D |mp||ed

m This rule allows the precondition to be
strengthened (i.e. to assume more than
necessary) and the postcondition to be
weakened (i.e. to conclude less then
possible).

m |t allows to import proofs from predicate logic
into the proofs of program logic.

A space issue

nfortunately, even proofs for the partial
orrectness of small programs do not fit on one
age. For example, an attempt to verify Facl
ields the proof below:

gets even wider gets even wider

(T)y:l;z:d(y:lAz:O) (y:l/\z:O)While(z#ar).(z:z+l;y:y*z}(y:z!]

(My=1z=0while(z#z){z=2+Liy=yx*z}{y==a!)

Proofs get too wide, and a lot of information is
copied from one line to the next.

: Tableaux

To make Hoare logic easier to use, we introduce
a different presentation called tableaux. We
think of a program as a sequence

Cr;

Cy;

C’!l

where each of the C; is either an assignment, an
if-statement, or a while-statement.

: Tableaux in logic

= Tableaux are ways of presenting of proofs
that are optimized for ease of use.

m There are different of tableaux methods for
different logics.

m For example, tableaux for predicate logic (as
seen in second-semester course) are very
different from the ones for Hoare logic we are
now studying.

: Sequences of triples

m Let C stand for the program Cy; Cs; . .. ; C,.
Suppose that we want to show

([¢UDC([¢HD-

= By the Composition rule, it suffices to prove
the triples below for suitable ¢, ¢, ..., ¢, 1.

([¢0D01 ([¢1D7 Q¢1DCZQ¢2D7 sy (I¢71—1])qu¢nb

Interleaving formulae
: with code

This suggest that we should design a calculus
which presents a proof of (¢o)C'(¢.) by
interleaving formulas with code as in

(%D

Cr;

(#1) justification
Co;

(dn—1) justification

Cn;
(&n) justification.
Midconditions

m The formulee ¢4, ..., ¢, 1 are called
midconditions.

m Each of the steps

(9]
Cit1;
(pi+1)
will appeal to the If-statement rule, or the

Partial-while rule, or the Assignment rule,
depending on C;.;.

Weakest
: preconditions

m Because the Assignment rule works upward,
it is most convenient to start with the final
condition ¢,, and work upwards, using C, to
obtain ¢,,_; and so on.

m Getting ¢; from ¢;,; and C; is mechanical
for assignments and if-statements; the ¢, so
obtained is the weakest precondition for
C;+1 with postcondition ¢; 1.

m That is, ¢; is the logically weakest formula
whose truth at the beginning of the execution
of C;,1 is enough to guarantee ¢; ;.

: Using tableaux

m The tableau for (¢)Cy; . . . ; C, () is typically
constructed by starting at with the
precondition and pushing it upwards
through C,,, then C,,_1, ..., until a formula ¢’
emerges at the top.

m ¢’ is a precondition which guarantees that the
postcondition ¢ will hold if the program
terminates.

= Finally, we check if ¢’ follows from the given
precondition ¢ by using the “Implied” rule.

Using the “Implied”
: rule in tableaux

m The “Implied” rule allows us to write one
formula ¢, directly underneath another
formula ¢, (with no code in between), if ¢;
implies ¢, in the sense of predicate logic.

m When using the “Implied” rule, we shall not
write out the predicate-logic proof of ¢; - ¢s,
because we focus on the program logic.

Example tableau

m See blackboard.
m We create the proof bottom-up.

m For checking the proof, it also makes sense to
proceed top-down.

	Hoare logic
	Hoare triples
	An idealized prog. language
	Expressions and commands
	Integer expressions
	Grammar of integer expressions
	Boolean expressions
	Commands
	Semantics of commands
	Assignment
	Sequential composition
	If-statements
	While-loops
	Example of semantics: factorial
	Example: factorial
	Partial correctness vs. total correctness
	On the meaning of $models $
	Partial correctness vs. total correctness
	Two versions of Hoare logic
	Soundness and completeness
	Soundness and completeness
	The shape of formul{ae }
	The rule for if-statements
	The shape of the formul{ae }
	The shape of the formul{ae }
	The shape of the formul{ae }
	The shape of the formul{ae }
	Rules for partial correctness
	The rule for composition
	The rule for assignment
	Partial correctness of while-statements
	The rule 	heword {Implied}
	A space issue
	Tableaux
	Tableaux in logic
	Sequences of triples
	Interleaving formul{ae } with code
	Midconditions
	Weakest preconditions
	Using tableaux
	Using the 	heword {Implied} rule in tableaux
	Example tableau

