Natural deduction for predicate
logic



ND for predicate
logic

The rules of ND for predicate logic are those of
ND for propositional logic, plus introduction rules
and elimination rules for V and 4.



V-elimination, first
attempt

The rule for V-elimination is as follows, where ¢
can be any term, and [t/x] means that ¢ is
substituted for every free occurrence of x In A.
(We shall formalize soon what “free” means.)

Vr.A
Alt/x]

Ve

This Is intuitively clear—consider

for all numbers n 1t holds that n 1S even or n 1S odd
91s even or 9 Is odd '

But there Is a catch. ..



Variable capture

m Consider e.qg. the formula below, which holds
e.g. for the natural numbers.

A=Vrdyz <y

= Applying V-elimination with ¢ = y yields the
following formula, which is not valid.

dy.y <y

m The mistake has been caused by variable
capture : the variable y Iin t has been caught
by the quantifier dy.



Scope

To make precise what variable capture Is, we
define the notion of scope .

. Definition. The scope of the occurrence of a
guantifier vz or 4z In a formula A Is obtained as
follows:

1. Let Vx.B be the subformula of A that starts
with the above quantifier occurrence.

2. Remove all subformulee of B that also start
with a quantifier for x (V or 3).



Scope: example

Example. The scope of the right-hand Vzx In the
formula

(Vz.p(z)) AVz.(p(z) — Fz.q9(2))

| is p(z) — e, where e stands for the hole that
results from removing dz.q(z).



Free variable
occurrences

Another definition we need to address the issue
of variable capture:

Definition. An occurrence of a variable x in a

. formula A is said to be free If it iIs neither part of
a quantifier (Va or dz) nor in the scope of a
qguantifier for z.

Example. The left z Is free in the formula below,
while the other two are not.

p(z) AVz.p(z)



Avoiding variable
capture

Next, we define the notion we shall use to avoid
variable capture:

Definition. Given aterm ¢, a variable x and a
formula A, we say thattis freefor xin Aif A
has no free occurrence of x in the scope of a
guantifier Yy or dy for any variable y occurring in
t. (In other words, if no variable capture happens
during the substitution Alt/x].)



V-elimination, final
version

In the style without assumptions:

Vr. A

At/ Ve Iftisfreeforzin A

' In the style with assumptions:

['-Vx. A

T F Alt/a] Ve Iftisfreeforzin A




V-introduction

In the style with assumptions, the rule for
V-introduction is

'~ A
['+=Vx. A

Intuitively,

Vi ifxg FV(T).

A holds of an arbitrary «
A holds for all x

From a syntactic point of view, “arbitrary” means
that x Is not used In the assumptions.




V-introduction

The rule for V-introduction in the style without
assumptions Is

A Vi If no undischarged assumption
Vi.A of A has a free occurrence of z.




Natural deduction:
example

Assuming that = does not occur freely in A, we
have the following ND proof:

B .

Vr.B Vi

A—Vz.B »
(Vz.(A— B)) = (A—Vz.B) *

>7;1

The side condition for the V-elimination 1s “z Is
free for x In A — B”. Exercise: show that z IS
free for z in any formula.



Exercises

the converse? Explain!)

3. F A< Vr.Awhere x ¢ FV(A).
4. - (Vo.A(x)) — —Ve.—A(x).

5. F (VaVy.A(x,y)) — Vo.A(x, z). (Does this
require a side condition? Explain!)



-iIntroduction

Alt/z]
Jx. A

' The intuition is almost trivial:

47 Iftisfreeforzin A

A(x) holds for some witness ¢ instead of «
there exists some x such that A(z) holds -

m The side condition only makes sure that ¢
contains no variables in the scope of
guantifiers.



In t
J-e

-elimination

ne style with explicit assumptions, the rule for
iImination Is

'+32.A T,AF B

e R de x¢ FV(I'U{B}).

Intuitively,

there is an x such that A(z)
an arbitrary = s.t. A(x) implies B
B holds

Technically, “arbitrary” means that neither the
assumptions nor the conclusion B contain z.



-elimination

In the style without explicit assumptions, the rule
for 3-elimination is

Al)

3z. A(z) B If neithe_r the undischarged
i Je assumptions nor B have free
occurrences of z.

Note the similarity with Ve.



Example




The following proof shows the converse of the
formula proved on the previous slide.

AL o
—dx.—Al,  dz.-A 32\

L pAA,

A
A
—Ar—A = V. A »

Note that this proof uses RAA. The formula
—dx.—A — Vx.A does not hold In intuitionistic
logic.

€




Exercise

Show that 4 can be expressed in terms of V by
defining
dx. A = —Vr.—A,

| In the sense that the introduction and elimination
rules for 3 follow from the other rules of ND.



Exercise

Show the claims below, where = ¢ FV (B).

5.

(
. dx.(A(x)V B(z)) — ((z.A(x

- (Vo.(A(z) — B)) — ((dz.A(x)) — B).

Bow N PR

- (3a.(A(z) A B)) < (Gz. Az

)) N B).
- (V. (A(x) V B)) < ((Vx.A(x)

)

)V (Fz.B(x))).
) A

)V B).

- (dx.A(x)) < V. —A(x).

(Some of these are hard—do not worry if you
cannot solve all five exercises.)



Summary of
quantifier rules

The introduction and elimination rules for
guantifiers are

' A ['+-Vx. A

Trvea ' 'TegfVd) [FAft/a]

ChAft/z) . TH3wA T,AFB
] FV(IU{A
rFaA I'FB ¢ vg FVITUAp),

where for Ve and i, the term ¢ must be free for «
In A.



Soundness

Theorem. [Soundness] If I' - A, then I' = A.

m The soundness of the rules for A, —, L, and
V IS shown in the same way as for
propositional logic.

m Showing the soundness of Vi, Ve, di, and de
IS fairly easy.



Exercise

The soundness proof for Vi works as follows:
suppose thatl' = Aand M = TI'. To see that

M = Vz.A, we need to show that M|a/z] = A for
all a € U. Because M =1 and x does not occur
freely in I', we have M|a/x| =T. Because

I' = A, we get Ma/z] = A.

Exercise: Prove the soundness of the remaining
guantifier rules.



Completeness

Theorem. [Completeness] If I' = A, then ' - A.

m The completeness proof follows the same
scheme as the one for propositional logic.

= Only the Model Existence Lemma needs to
be re-proved, because situations now involve
a universe, functions, and predicates.

= While the proof of Model Existence Lemma Is
still based on (an updated version of)
maximally consistent sets, it is much harder
than in the propositional case.
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