
Completeness:
literature

Completeness proofs for propositional logic are
in

“Logic in Computer Science” by Huth and
Ryan, Chapter 1.

“Logic and Structure” by van Dalen,
Chapter 1.

The two proofs differ. The proof presented in this
course is a slightly modified version of van
Dalen’s.
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About maximally
consistent sets

Lemma. Every consistent set Γ is contained in a
maximally consistent set Γ∗.
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Proof of lemma (part
1/2)

Proof. Let A0, A1, A2, . . . be an enumeration of all formulæ.

We define a sequence Γ0,Γ1,Γ2, . . . of sets of formulæ

such that the union is maximally consistent:

Γ0 = Γ

Γn+1 =







Γ ∪ {An} if Γ ∪ {An} is consistent.

Γ otherwise

Γ∗ =
⋃

{Γ : n ≥ 0}
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Proof of lemma (part
2/2)

1. All Γn are consistent: this follows immediately from

induction on n.

2. Γ∗ is consistent: suppose not, i.e. Γ∗ ⊢ ⊥. The proof of

⊥ needs only finitely many assumptions from Γ∗, so we

have Γn → ⊥ for some n. But this is impossible

because of (1).

3. Γ∗ is maximally consistent: suppose not, i.e. Γ∗ ∪ {B}

is consistent for some B 6∈ Γ∗. We have B = An for

some n, and An ∈ Γn+1 ⊆ Γ∗. Contradiction!

Q.e.d.
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The Model Existence
Lemma

To prove completeness, it remains to prove the
Model Existence Lemma.

Lemma. Every consistent set Γ of formulæ has a
model.

Proof. Blackboard or van Dalen.

This concludes the completeness proof for
propositional logic.
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Proof of MEL (part
1/3)

Proof. By earlier lemma, Γ is contained in a maximally

consistent Γ∗. Define a situation M be letting

[[p]]M =







1 if p ∈ Γ∗

0 otherwise
.

Now we prove by induction on the size of A that

A ∈ Γ∗ if and only if M |= A.
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Proof of MEL (part
2/3)

A = p: by definition of M , we have [[p]]M = 1, and

therefore M |= p.

A = ⊥: the formula A is never in Γ∗ because Γ∗ is

consistent, and M is never a model of ⊥.

A = B ∧ C:

A ∈ Γ∗ iff B ∈ Γ∗ and C ∈ Γ∗ (by ∧e and ∧i)

iff M |= B and M |= C (ind. hyp. )

iff M |= B ∧ C (by definition of |=).
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Proof of MEL (part
3/3)

A = B → C:

A ∈ Γ∗ iff B ∈ Γ∗ implies C ∈ Γ∗ (previous lemma)

iff M |= B implies M |= C (ind. hyp. )

iff M |= B → C (by definition of |=).

Here ends the induction proof of

A ∈ Γ∗ iff M |= A.

In particular, it follows that M is a model of Γ∗, and

therefore of Γ. This concludes the proof of the Model

Existence Lemma, and thereby the completeness proof.
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Natural deduction for
∨

Recall that we decided to not include ∨ into
the language of formulæ, because

A ∨ B = ¬(¬A ∧ ¬B).

Still, it is good to know the introduction and
elimination rules for ∨.
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∨-introduction

A1 ∨i
A1 ∨ A2

A2 ∨i
A1 ∨ A2

The soundness of these rules is evident.
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∨-elimination

The version without explicit assumptions is

A ∨ B

[A]
···
C

[B]
···
C

∨e.
C

Intuitively,

everything is an A or a B

every A is a C

every B is a C

everything is a C
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∨-elimination

The version with explicit assumptions is

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C
∨e.

Γ ⊢ C

The soundness proof goes as follows: let Γ |= A ∨ B and Γ, A |= C and Γ, B |= C, and

M |= Γ. By definition of |=, we have M |= A or M |= B. In the first case, M |= Γ, A and

therefore M |= C. In the second case, M |= Γ, B and therefore M |= C.
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RAA and excluded
middle

To demonstrate the inference rules for ∨, we
show the important fact that the law of the
excluded middle

EM
A ∨ ¬A

is interderivable with RAA.

This is significant, because from a
constructivist’s point of view it means that EM

is as dubious as RAA.
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From RAA to EM

Here is how to derive EM with the help of RAA.

[¬(A ∨ ¬A)]2

[¬(A ∨ ¬A)]2

[A]1 ∨i
A ∨ ¬A

→ e
⊥

→ i1¬A
∨i

A ∨ ¬A
→ e

⊥
RAA2A ∨ ¬A
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From EM to RAA

Suppose that we have EM . To show that we
have RAA, we must be able to derive A from any
derivation D as below.

¬A
··· D
⊥

Here is how it works:

EM

A ∨ ¬A [A]

[¬A]
·
·
·
D

⊥
⊥e

A
∨e.

A
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Soundness and
completeness with ∨

Theorem.

If Γ ⊢ A is provable in the “ND with ∨”, then
Γ |= A (soundness).

If Γ |= A, then Γ ⊢ A is provable in “ND with
∨”.

Proof. Soundness is straightforward. Completeness holds essentially because B ∨ C is

equivalent with ¬(¬B ∧ ¬C) and we already have completeness in the absence of ∨;

the details are somewhat technical and we omit them here.
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Predicate logic (revision)
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Predicate logic:
motivation

Propositional logic is insufficient for many
applications. E.g. it cannot express the
sentence

“Every student is younger than some
supervisor”.

To state this sort of sentence, we need
predicate logic. E.g. the sentence above
could be expressed as follows:

∀x.student(x) → ∃y.supervisor(y) ∧ age(x) < age(y).

∀ means “for all” and ∃ means “exists”.
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Predicate logic: new
features

Example again:

∀x.student(x) → ∃y.supervisor(y) ∧ age(x) < age(y).

Predicate logic can be seen as propositional
logic plus:

variables (e.g. x, y),

(∀,∃),

quantifiers,

functions (e.g. age), and

relations (e.g. <).
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Predicate logic and
maths

In particular, predicate logic is ubiquitous in
mathematics. E.g. consider

∀ǫ.ǫ > 0 → ∃δ.

δ > 0 ∧ ∀y.abs(x − y) < δ → abs(f(x) − f(y)) < ǫ.

Quiz: does this ring a bell?
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Syntax

The syntax of predicate logic uses two kinds of
expressions:

Terms, e.g.
x, y, age(x), 0, ǫ, δ, x − y, f(x), abs(f(x) − f(y)).

Formulæ, e.g. supervisor(y), δ > 0,
age(x) < age(y), ∀x.student(x), ∃δ.δ > 0.

Formulæ are those expressions that can be
true or false.

Terms stand for individuals of some
universe.
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Signatures

The well-formed terms and formulæ are
described by the signature:

Definition. A signature consists of

A set of function symbols f, g, h, . . ., such
that each symbol f has an arity ar(f) ≥ 1
(i.e. a number describing how many
arguments f takes).

A set of constants c, d, . . ..

A set of relation symbols p, q, r, . . ., such
that each symbol r has an arity ar(r) ≥ 0.
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Signatures

Examples.

“+” is a function symbol or arity 2.

“7” is a constant.

“supervisor” is a relation symbol of arity 1.

“<” is a relation symbol of arity 2.
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Terms

Definition. The terms for a given signature are
given as follows:

Every variable is a term. (We assume
enumerably many variables x1, x2, x3, . . ..)

Every constant is a term.

If t1, . . . , tn are terms and f is a function
symbol of arity n, then f(t1, . . . , tn) is a term.
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Formulæ

Definition. The formulæ of predicate logic are given as

follows:

If t1, . . . , tn are terms and p is a predicate symbol of

arity n, then p(t1, . . . , tn) is a formula.

If A and B are formulæ, then so are (A ∧ B) and

(A ∨ B) and (A → B);

if A is a formula, then so is (¬A).

⊤ and ⊥ are formula.

If x is a variable and A is a formula, then (∀x.A) and

(∃x.A) are formulæ.
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Semantics

A situation for predicate logic is a pair
consisting of a structure and a variable
assignment.

The structure describes the functions and
relations corresponding to the the function
symbols and relation symbols.

The variable assignment sends each variable
to an element of the universe on which the
functions and relations are defined.
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Structures

Definition. A structure M for a given signature
consists of

a non-empty set U called universe,

for every constant c, an element of U ,

for every function symbol f of arity n, an

n-ary function fM , and

for every relation symbol p of arity n, an n-ary

relation pM .
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Examples of
structures

The ring of integers: the universe U is the set
of integers; functions are +, ∗, unary −.
Constants are 1 and 0. No relations.

The ordered set of natural numbers: the
universe U is the set of natural numbers;
there is one relation, <, and no functions or
constants.
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Situations

Definition. A situation M is a structure together

with, for every variable x, an element xM of U .
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Semantics of terms

Before we define the satisfaction relation, we
must describe the meaning of terms.

Definition. In a situation M , a term t denotes an
element [[t]]M of the universe as follows:

[[x]]M = xM

[[c]]M = cM

[[f(t1, . . . , tn)]]M = fM([[t1]]M , . . . , [[tn]]M)
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Semantics of
formulæ

Definition. The satisfaction relation for predicate logic is defined as

follows, where M [a/x] stands for the situation that is like M except that

the variable x is interpreted as a.

M |= p(t1, . . . , tn) if ([[t1]]M , . . . , [[tn]]M ) ∈ pM

M |= ∀x.A if for all a ∈ U it holds that M [a/x] |= A

M |= ∃x.A if there exists an a ∈ U such that M [a/x] |= A

M |= A ∧ B if M |= A and M |= B

M |= A ∨ B if M |= A or M |= B

M |= A → B if M |= A implies M |= B

M |= ¬A if M 6|= A

M |= ⊥ never

M |= ⊤ never – p. 31/33

Predicate logic vs.
propositional logic

By definition of the semantics, for a nullary
predicate symbol p we have

M |= p() if () ∈ pM

Such a p has only two possible behaviours:
M |= p() or M 6|= p().

So nullary relation symbols take over the rôle
of the propositional atoms.

Thus propositional logic can be seen as the
simplified case of predicate logic where all
predicate symbols are nullary.
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Validity, satisfiability,
semantic entailment

The definitions of validity, satisfiability, and
semantic entailment for predicate logic look
exactly the same as for propositional logic.
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