Natural deduction



Motivation for formal
Inference systems

How can we check if

Ay.... A, = B?

| For propositional logic, there is an algorithm:
1. Check for every situation M if, whenever
M= A;forall: €{1,... n},then M = B.
2. Ifthisis true, then A44,... A, = B,

3. Otherwise A;,.... A, ~ B.

Why does this algorithm always terminate?



Motivation for formal
Inference systems

m The algorithm terminates because there are
only finitely many situations:

mletp,,...,p, be the propositional atoms that
occurin{A,,..., A,, B}.

m A situation corresponds to a truth table, e.g.

Pr|P2 P3| ---|Pm
O|1|1/...]0 7

m There are 2 possibilities for each p;, so the
number of situations we have to try is 2.



Motivation for formal
Inference systems

m However, there are other logics (e.g.
predicate logic) with infinitely many situations.

m S0 the method we have just seen can no
longer terminate with a positive result
(because there are always more situations to
check).

m SO we need a different way of showing I' = A.

m The first such system we shall study is
natural deduction

Another such system was presented in Dan Richardson’s second-year
lecture: tableaux. “p. 40



Natural deduction

= Natural deduction Is called so because it
mimics human reasoning in real life (in
particular, in maths).

= ND systems exist for various logics
(propositional logic, predicate logic, modal
logic, intuitionistic logic...)

= We begin with ND for propositional logic
because It Is the simplest.

m We shall see ND systems for more
sophisticated logics later.



Natural deduction

Natural deduction Is a calculus to derive

entallments
['=A

step by step, in a purely symbolic way, without
. referring to situations.




A-Introduction

mlfI' = Aand I' = B, then evidently
' =ANB.

m To account for this, ND has the rule

A B .
N R

m /\7 IS the name of the rule: its stands for
“and-introduction”.

m The formulae above the horizontal line are the
premises of the rule.

m The formula below the line is the conclusion .



A-elimination

mlfI' = AA B, thenevidently I' = A and
I' = B.

m To account for this, the calculus has the rules

ANDB ANDB
d .
) \e an B \e




A natural-deduction
proof

The following i1s a proof of p A ¢, r = p A r in the
ND calculus.

P (A

pPAT A\

= Note that the proof is a tree.
mTherootispAr.
m The left branch leads to the leaf p A ¢, via p.

m The right branch leads directly to the leaf r.



—-elimination

m As we have seen, A has introduction and
elimination rules.

m The same Is true for every connective.

m —-elimination Is the aforementioned modus
ponens :

A A— B
B

Example:

It rained If it rained, then the street Is wet
The street Is wet




A natural-deduction
proof

The following proof shows p,q,p Aq — r

P q .
pAg’t pAg—T

r

> €

= What is the root of this proof-tree?
= How many leaves has it got?




—-INntroduction

mEvidently, fI' A = B,then]' = A — B.
= Note that A moves from the left to the right.

m Here is the —-introduction rule:
A

B
A— B

m The square brackets mean that the
assumption A is removed—the technical word
IS discharged .

> 1




A natural-deduction
proof

The following proof shows
pAg—T1TEDP—(qg—r)

[p]2 [Q]1 A
pAg—T  pAg ]
r i
q—r v
p—(qg—r) 7

The subscripts 1 and 2 indicate in which order
the assumptions are discharged.



A natural-deduction
proof

The following proof shows the converse of the
entallment on the previous slide:
p—(q@—1)FEPpNqg—T.

P A qlh
p—(@—r) D he P A gl
s € ANG
q— q
> €
T >i
pAg—T

The two superscripts 1 indicate that the two
occurrences of p A g are considered the same,
and are discharged simultaneously.



Negation

For reasons that will become clearer later, we
define negation in terms of implication and falsity:

-A=(A— 1)

Note that this implies that the introduction and
elimination rules for — apply in particular to —.



A natural-deduction
proof

The following proof shows A = ——A.

A=D—1 "




Reductio ad
absurdum ( RAA)

m The converse of the entaillment of the
previous slide iIs ——A = A.

m Evidently, it Is valid with respect to the
truth-table semantics.

m Remarkably, it is not provable with the rules
shown so far.

m SO we need to add it to the calculus.



Reductio ad
absurdum ( RAA)

The RAA rule iIs

m |t IS the only rule which is neither an
Introduction rule nor an elimination rule.

m The English name for this rule is proof by
contradiction



Reductio ad
absurdum ( RAA)

m RAA Is the only rule which is neither an
Introduction rule nor an elimination rule.

m |t IS considered invalid by constructivists. (We
shall come back to this when we discuss
Intuitionistic logic.)

m But it Is needed to prove all entaillments that
hold w.r.t. the truth-table semantics we are
currently considering.



A natural-deduction
proof

The following proof shows -B — -A = A — B.

—lB—>—|A [_IB]l .
—A

L
B RAAl‘

A B "7




Ex falso quodlibet

Finally, we need a rule that states that false
entalls anything (the Latin phrase Is “ex falso
[sequitur] quodlibet”).

1
Z le
This is an elimination rule (no introduction rule Is

needed for _L).



Dropping VvV and T

m For the time being, we ignore the connectives
Vand T.

m This Is no real loss, because they can be
defined in terms of other connectives:

A\/B:—I(—lA/\—IB)




Summary of ND

Definition. A natural deduction proof s a finite
tree whose leaves are formulae (over the
alphabet A, —, 1) and which is built by using only

the rules below.

A B A B A B
A1 Ne Ae
ANB A B
[A]
' A—B A
— €
B | B
— 1
A B
— —|A
J_ .
—J_e J_



Exercises

Prove the validity of the following semantic
entailments by using natural deduction:

(ANBYAC = AN (BAC)
A LA
= (ANA) — A

1L E A




Exercises

Prove the validity of the following formulae by
using natural deduction:

(ANB) — (BNA)
(CANA) — L
A—ANA
(A—B)— A) — 4
(A= B)—((B—C)—(A—0)

(Note that we have seen these laws before.)



Syntactic entailment

Definition. For a set of formula I' and a formula
A, we define

I'FA

If A follows from assumptions I' in the
natural-deduction calculus. We call the relation

syntactic entailment



A different
presentation of ND

There is an equivalent presentation of ND that defines -
directly. Note that — i is the only rule where the
assumptions change (because A is discharged).

[FA TEB .~ DEAAB — [HAAB
T-EAnB r-—a ¢ r-n '°
AFB  THA—B THA
r-4A—-pB '~ B $ €

T 1 P —AF L
s ’ RAA

'-A '-A

—p. 27/30



A different
presentation of ND

Actually, we need to add one rule to make this
different presentation work:

T AF 407

| It only states the evident fact that assumptions
can be used immediately as conclusions.



A different
presentation of ND

Proofs with explicit assumptions have
advantages, but the price Is visual clutter:
compare the proof

[p]2 [Q]l/\i
pAg—T pha
T >i1
q—T .
p—(g—r) °

with the following proof of the same entailment. . .



A different
presentation of ND

Ax Ax

pANq—r1,p,qp pANq—r1,p,qq
Az %)

pANq—T,p,qgEDpANg—T pANqg—T,p,qFDPANq

— €
pANq—rT,p,qgkT

pANq—r,pFq—T

pANg—rFp—(qg—r)

—p. 30/30
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