
Natural deduction
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Motivation for formal
inference systems

How can we check if

A1, . . . , An |= B?

For propositional logic, there is an algorithm:

1. Check for every situation M if, whenever
M |= Ai for all i ∈ {1, . . . , n}, then M |= B.

2. If this is true, then A1, . . . , An |= B,

3. Otherwise A1, . . . , An 6|= B.

Why does this algorithm always terminate?
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Motivation for formal
inference systems

The algorithm terminates because there are
only finitely many situations:

Let p1, . . . , pm be the propositional atoms that
occur in {A1, . . . , An, B}.

A situation corresponds to a truth table, e.g.

p1 p2 p3 . . . pm

0 1 1 . . . 0
.

There are 2 possibilities for each pi, so the
number of situations we have to try is 2m.
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Motivation for formal
inference systems

However, there are other logics (e.g.
predicate logic) with infinitely many situations.

So the method we have just seen can no
longer terminate with a positive result
(because there are always more situations to
check).

So we need a different way of showing Γ |= A.

The first such system we shall study is
natural deduction .

Another such system was presented in Dan Richardson’s second-year
lecture: tableaux. – p. 4/30



Natural deduction
Natural deduction is called so because it
mimics human reasoning in real life (in
particular, in maths).

ND systems exist for various logics
(propositional logic, predicate logic, modal
logic, intuitionistic logic...)

We begin with ND for propositional logic
because it is the simplest.

We shall see ND systems for more
sophisticated logics later.
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Natural deduction
Natural deduction is a calculus to derive
entailments

Γ |= A

step by step, in a purely symbolic way, without
referring to situations.
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∧-introduction
If Γ |= A and Γ |= B, then evidently
Γ |= A ∧ B.

To account for this, ND has the rule

A B
∧i

A ∧ B

∧i is the name of the rule; its stands for
“and-introduction”.

The formulæ above the horizontal line are the
premises of the rule.

The formula below the line is the conclusion .
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∧-elimination
If Γ |= A ∧ B, then evidently Γ |= A and
Γ |= B.

To account for this, the calculus has the rules

A ∧ B
∧e

A
and A ∧ B

∧e
B

.
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A natural-deduction
proof

The following is a proof of p ∧ q, r |= p ∧ r in the
ND calculus.

p ∧ q
∧e

p r
∧i

p ∧ r

Note that the proof is a tree.

The root is p ∧ r.

The left branch leads to the leaf p ∧ q, via p.

The right branch leads directly to the leaf r.
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→-elimination
As we have seen, ∧ has introduction and
elimination rules.

The same is true for every connective.

→-elimination is the aforementioned modus
ponens :

A A → B
→ e

B

Example:

It rained If it rained, then the street is wet
The street is wet – p. 10/30



A natural-deduction
proof

The following proof shows p, q, p ∧ q → r |= r.

p q
∧i

p ∧ q p ∧ q → r
→ e

r

What is the root of this proof-tree?

How many leaves has it got?
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→-introduction
Evidently, if Γ, A |= B, then Γ |= A → B.

Note that A moves from the left to the right.

Here is the →-introduction rule:

[A]
···
B

→ i
A → B

The square brackets mean that the
assumption A is removed—the technical word
is discharged .
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A natural-deduction
proof

The following proof shows
p ∧ q → r |= p → (q → r).

p ∧ q → r

[p]2 [q]1 ∧i
p ∧ q

→ e
r

→ i1q → r
→ i2p → (q → r)

The subscripts 1 and 2 indicate in which order
the assumptions are discharged.
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A natural-deduction
proof

The following proof shows the converse of the
entailment on the previous slide:
p → (q → r) |= p ∧ q → r.

p → (q → r)
[p ∧ q]1 ∧e

p
→ e

q → r

[p ∧ q]1 ∧e
q
→ e

r
→ i1p ∧ q → r

The two superscripts 1 indicate that the two
occurrences of p ∧ q are considered the same,
and are discharged simultaneously. – p. 14/30



Negation

For reasons that will become clearer later, we
define negation in terms of implication and falsity:

¬A = (A → ⊥).

Note that this implies that the introduction and
elimination rules for → apply in particular to ¬.
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A natural-deduction
proof

The following proof shows A |= ¬¬A.

[A → ⊥]1 A
→ e

⊥
→ i1(A → ⊥) → ⊥
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Reductio ad
absurdum ( RAA)

The converse of the entailment of the
previous slide is ¬¬A |= A.

Evidently, it is valid with respect to the
truth-table semantics.

Remarkably, it is not provable with the rules
shown so far.

So we need to add it to the calculus.
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Reductio ad
absurdum ( RAA)

The RAA rule is

[¬A]
···
⊥

RAA.
A

It is the only rule which is neither an
introduction rule nor an elimination rule.

The English name for this rule is proof by
contradiction
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Reductio ad
absurdum ( RAA)

RAA is the only rule which is neither an
introduction rule nor an elimination rule.

It is considered invalid by constructivists. (We
shall come back to this when we discuss
intuitionistic logic.)

But it is needed to prove all entailments that
hold w.r.t. the truth-table semantics we are
currently considering.
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A natural-deduction
proof

The following proof shows ¬B → ¬A |= A → B.

¬B → ¬A [¬B]1 → e
¬A [A]2 → e

⊥
RAA1B

→ i2A → B
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Ex falso quodlibet

Finally, we need a rule that states that false
entails anything (the Latin phrase is “ex falso
[sequitur] quodlibet”).

⊥
⊥e

A

This is an elimination rule (no introduction rule is
needed for ⊥).
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Dropping ∨ and ⊤

For the time being, we ignore the connectives
∨ and ⊤.

This is no real loss, because they can be
defined in terms of other connectives:

A ∨ B = ¬(¬A ∧ ¬B)

⊤ = (⊥ → ⊥).
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Summary of ND

Definition. A natural deduction proof is a finite
tree whose leaves are formulæ (over the
alphabet ∧,→,⊥) and which is built by using only
the rules below.

A B
∧i

A ∧ B

A B
∧e

A

A B
∧e

B

[A]
·
·
·
B

→ i
A → B

A → B A
→ e

B

⊥

⊥e
A

¬A
·
·
·

⊥

RAA

A
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Exercises
Prove the validity of the following semantic

entailments by using natural deduction:

(A ∧ B) ∧ C |= A ∧ (B ∧ C)

¬A → ⊥ |= A

|= (A ∧ A) → A

⊥ |= A.
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Exercises
Prove the validity of the following formulæ by
using natural deduction:

(A ∧ B) → (B ∧ A)

(¬A ∧ A) → ⊥

A → A ∧ A

((A → B) → A) → A

(A → B) → ((B → C) → (A → C)).

(Note that we have seen these laws before.)
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Syntactic entailment

Definition. For a set of formula Γ and a formula
A, we define

Γ ⊢ A

if A follows from assumptions Γ in the
natural-deduction calculus. We call the relation ⊢
syntactic entailment .
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A different
presentation of ND

There is an equivalent presentation of ND that defines ⊢

directly. Note that → i is the only rule where the
assumptions change (because A is discharged).

Γ ⊢ A Γ ⊢ B
∧i

Γ ⊢ A ∧ B

Γ ⊢ A ∧ B
∧e

Γ ⊢ A

Γ ⊢ A ∧ B
∧e

Γ ⊢ B

Γ, A ⊢ B
→ i

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A
→ e

Γ ⊢ B

Γ ⊢ ⊥
⊥e

Γ ⊢ A

Γ,¬A ⊢ ⊥
RAA

Γ ⊢ A
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A different
presentation of ND

Actually, we need to add one rule to make this
different presentation work:

Ax
Γ, A ⊢ A

It only states the evident fact that assumptions
can be used immediately as conclusions.
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A different
presentation of ND

Proofs with explicit assumptions have
advantages, but the price is visual clutter:
compare the proof

p ∧ q → r

[p]2 [q]1 ∧i
p ∧ q

→ e
r

→ i1q → r
→ i2p → (q → r)

with the following proof of the same entailment. . .
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A different
presentation of ND

Ax

p ∧ q → r, p, q ⊢ p ∧ q → r

Ax

p ∧ q → r, p, q ⊢ p
Ax

p ∧ q → r, p, q ⊢ q
∧i

p ∧ q → r, p, q ⊢ p ∧ q
→ e

p ∧ q → r, p, q ⊢ r
→ i

p ∧ q → r, p ⊢ q → r
→ i

p ∧ q → r ⊢ p → (q → r)
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