Propositional logic (revision) & semantic entailment

The background reading for propositional logic is Chapter 1 of Huth/Ryan. (This will cover approximately the first three lectures.)

Logical propositions

The basic building blocks of any logic are **logical formulæ** (also called "propositions" or "sentences").

Examples:

- Propositional logic: $p \land (p \rightarrow q) \rightarrow q$, $p \land \neg p$, $(p \land \neg q) \lor (q \land \neg p)$.
- Predicate logic: $\forall x. \exists y : f(x, g(y)) = c$.
- Modal logic: $\Box(p \to q) \to (\Box p \to \Box q)$.

The language of propositional logic

Definition. The language of propositional logic has an alphabet consisting of

propositional atoms: p, q, r, \ldots

connectives: \land , \lor , \rightarrow , \neg , \top , \bot

auxiliary symbols: (,)

The language of propositional logic

The connectives carry the traditional names:

\land	and	conjunction
\vee	or	disjunction
\rightarrow	if then	implication
	not	negation
	true	
	false	

Syntax of formulæ

Definition. The formulæ of propositional logic, for a given set $\{p, q, r, ...\}$ of **propositional atoms**, is given as follows:

- every propositional atom a formula, and so are \top and \bot ;
- if A and B are formulæ, then so are $(A \land B)$ and $(A \lor B)$ and $(A \to B)$;
- if A is a formula, then so is $(\neg A)$;

(We shall often omit brackets if the meaning is clear.)

– p. 6/34

Meta-variables and object-variables

- The greek letters A, B, ... are meta-variables: they are not formulæ—they part of our mathematician's English.
- By contrast, the propositional atoms p, q, ... are object-variables: they are formulæ.

Meta-language and object-language

Consider the following sentence:

The Java program P runs faster than the Java program Q, because P has a better handling of the variable counter.

- Java is the object-language, i.e. the language about which we speak. counter is an object-variable, because it belongs to Java.
- IT-English is the meta-language, i.e. the language in which we speak. P and Q are meta-variables.

Meta-language and object-language

Back to logics:

- Mathematician's (or logician's) English (or German or...) is our meta-language. A, B, ... are meta-variables.
- Formulæ and similar things form the object-language. p, q, \ldots are object-variables.

Semantics

- So far, we have discussed the syntax, i.e. the rules defining the language (of formulæ). But what is the meaning of a formula?
- Semantics is the study of meanings.

Semantics

- For example, in computability theory, the meaning of a program (or Turing machine or abacus machine...) is a function from the natural numbers to the natural numbers.
- English sentences also have a meaning (but it is extremely hard to capture mathematically).

Semantics of logical formulæ

In logics, meaning is often described by a satisfaction relation

 $M \models A$

that describes when a **situation** M satisfies a formula A.

It varies between logics what formulæ and situations are.

Situations

Definition. A situation M in propositional logic (also called "valuation") assigns to each propositional atom p a value $[\![p]\!]_M \in \{0, 1\}$.

The satisfaction relation

Definition. The **satisfaction relation** \models is defined as follows:

 $M \models A \land B$ iff $M \models A$ and $M \models B$ $M \models A \lor B$ iff $M \models A$ or $M \models B$ $M \models A \rightarrow B$ iff whenever $M \models A$ then $M \models B$ $M \models \neg A \text{ iff } M \not\models A$ $M \models \top$ always $M \models \bot$ never $M \models p \text{ iff } \llbracket p \rrbracket_M = 1$

The satisfaction relation

Definition. A situation M is said to **satisfy** a formula A if $M \models A$.

Definition. A situation M is said to satisfy a set Γ of formulæ if M satisfies every formula in Γ . In this case, we write

 $M \models \Gamma.$

Models

Definition.

- A situation M that satisfies a formula A is called a model of A.
- A situation M that satisfies a set of formulæ Γ is called a model of Γ.

Examples

Let *M* be a situation such that $M \models p$ $M \not\models q$ $M \models r$. Which of the following entailments hold? 1. $M \models p \land \neg q$ **2.** $M \models q \lor \neg r$ 3. $M \models p \rightarrow q$ 4. $M \models q \rightarrow q$

Truth-table semantics

The satisfaction relation we have just seen can also be presented by using truth-tables:

A	B	$A \wedge B$	A	B	$A \lor B$	A	B	$A \to B$			
0	0	0	0	0	0	0	0	1	Ţ	1	$\neg A$
0	1	0	0	1	1	0	1	1	()	1
1	0	0	1	0	1	1	0	0	1	-	0
1	1	1	1	1	1	1	1	1			

Exercise: formalize this.

Definition. A propositional formula *A* is called **valid** (or a **tautology**) if it holds in every situation, i.e.

$$M \models A$$
 for all situations M .

Example. Which of the formulæ below are valid? 1. $(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$ 2. $p \lor q \lor \neg r$

Exercise

Show that the formulæ below are tautologies (where $\Box \in \{\land,\lor\}$) and $A \leftrightarrow B$ is defined as $(A \rightarrow B) \land (B \rightarrow A)$:

 $((A \Box B) \Box C) \leftrightarrow (A \Box (B \Box C))$ (associativity) $(A \Box B) \leftrightarrow (B \Box A)$ (commutativity) $(A \land \top) \leftrightarrow A$ $(A \lor \bot) \leftrightarrow A$ (neutrality) $(A \land (B \lor C)) \to ((A \land B) \lor C)$ (linear distributivity) $(\neg A \land A) \rightarrow \bot$ (contradiction) $\top \to (A \lor \neg A)$ (excluded middle) $A \leftrightarrow A \Box A$ (idempotency) $A \to \top$ $| \rightarrow A$ (ex falso quodlibet).

Remark: this is an axiomatization of Boolean lattices.

Exercise

Show that the formulæ below are tautologies:

 $(A \land B) \leftrightarrow \neg(\neg A \lor \neg B)$ $(A \lor B) \leftrightarrow \neg(\neg A \land \neg B)$ $\top \leftrightarrow \neg \mid$ $| \leftrightarrow \neg \top$ $(A \to B) \leftrightarrow (\neg A \lor B)$ $(\neg A \to \bot) \to A$ $(\neg B \to \neg A) \to (A \to B)$ $((A \to B) \to A) \to A$

(DeMorgan) (DeMorgan) (DeMorgan) (DeMorgan)

(reductio ad absurdum) (contrapositive) (Pierce's law).

Definition. A set of formulæ Γ is called **satisfiable** if it has a model, i.e.

 $M \models \Gamma$ for some situation M.

Example: Which of the sets below are satisfiable?

•
$$\{p, \neg q\}$$

• $\{p, \neg p\}$

Semantic entailment

Definition. Let $\Gamma = \{A_1, \ldots, A_n\}$ be a set of formulæ, and *B* a formula. We say that Γ **semantically entails** *B* and write

 $\Gamma \models B$

if every model of $\{A_1, \ldots, A_n\}$ is also a model of B.

Remark: sometimes, "entailment" is called "consequence".

Warning: $\Gamma \models B$ differs from $M \models B$; these conflicting uses of the symbol \models are

traditional.

Which of the following entailments hold?

$$\blacksquare \{p, q, r\} \models q$$

$$\blacksquare \{\} \models p \lor \neg p$$

$$\blacksquare \{p \to q\} \models p$$

$$\blacksquare \{p \land \neg p\} \models q$$

Exercise: natural deduction

Prove the following facts about semantic entailment. (These are the rules of **natural deduction**, which we shall study soon. The comma stands for union of sets of formulæ.)

Example: modus ponens

We prove

$$\frac{\Gamma \models A \to B \quad \Gamma \models A}{\Gamma \models B} \to e$$

This is the famous **modus ponens** already known to the ancient Greeks.

Proof: Suppose that $M \models \Gamma$. Because of the two assumptions, we have $M \models A \rightarrow B$ and $M \models A$. By definition, the statement $M \models A \rightarrow B$ means that $M \models B$ whenever $M \models A$. So $M \models B$.

Multiple conclusions

Definition. Let $\Gamma = \{A_1, \ldots, A_n\}$ and $\Delta = \{B_1, \ldots, B_m\}$ be sets of formulæ. We say that Γ semantically entails Δ and write

if every model of A_1, \ldots, A_n satisfies **at least one** B_i in Δ . Note that this is the same as saying that

 $\Gamma \models \Delta$

 $A_1 \wedge \ldots \wedge A_n \models B_1 \vee \ldots \vee B_m.$

Which of the following entailments hold?

$$\{p \lor q\} \models \{p, q\}$$
$$\{\} \models \{p, q \to p\}$$

$$\blacksquare \{p, \neg p\} \models \{\}$$

$$\blacksquare \{\} \models \{p, \neg p\}$$

Example: right weakening

Claim: whenever $\Gamma \models \Delta$ and $\Delta \subseteq \Delta'$, it holds that $\Gamma \models \Delta'$. Short notation:

$$\frac{\Gamma \models \Delta}{\Gamma \models \Delta'} \text{ if } \Delta \subseteq \Delta'.$$

Is the claim true?

Exercise: sequent calculus

Prove the following. (These are rules of the **sequent calculus**, which we shall study later in this course.)

 $\overline{A \models A} \qquad \frac{\Gamma_{2} \models \Delta_{1}, A, \Delta_{3} \quad \Gamma_{1}, A, \Gamma_{3} \models \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \models \Delta_{1}, \Delta_{2}, \Delta_{3}} Cut$ $\frac{\Gamma, A, B \models \Delta}{\Gamma, A \land B \models \Delta} L \land \qquad \frac{\Gamma \models A, \Delta \quad \Gamma' \models B, \Delta'}{\Gamma, \Gamma', \models A \land B, \Delta, \Delta'} R \land$ $\frac{\Gamma, A \models \Delta \quad \Gamma', B \models \Delta'}{\Gamma, \Gamma', A \lor B \models \Delta, \Delta'} L \lor \qquad \frac{\Gamma \models A, B, \Delta}{\Gamma \models A \lor B, \Delta} R \lor$ $\frac{\Gamma \models A, \Delta \quad \Gamma', B \models \Delta'}{\Gamma, \Gamma', A \to B \models \Delta, \Delta'} L \to \qquad \frac{\Gamma, A \models \Delta, B}{\Gamma \models A \to B, \Delta} R \to$

Example: the cut rule

The famous cut rule, which we shall study in depth later, states that whenever

 $\Gamma_2 \models \Delta_1, A, \Delta_3$ and $\Gamma_1, A, \Gamma_3 \models \Delta_2,$

then

$$\Gamma_1, \Gamma_2, \Gamma_3 \models \Delta_1, \Delta_2, \Delta_3$$

Short notation:

$$\frac{\Gamma_2 \models \Delta_1, A, \Delta_3 \quad \Gamma_1, A, \Gamma_3 \models \Delta_2}{\Gamma_1, \Gamma_2, \Gamma_3 \models \Delta_1, \Delta_2, \Delta_3} \,.$$

Validity of the cut rule

Suppose that $\Gamma_2 \models \Delta_1, A, \Delta_3$ and $\Gamma_1, A, \Gamma_3 \models \Delta_2$. To see that $\Gamma_1, \Gamma_2, \Gamma_3 \models \Delta_1, \Delta_2, \Delta_3$, assume that $M \models \Gamma_1, \Gamma_2, \Gamma_3$. Because $\Gamma \vdash \Gamma_2$, the situation M satisfies at least one formula in Δ_1, A, Δ_3 .

- Case 1: $M \models A$. In this case, we have $M \models \Gamma_1, A, \Gamma_3$, and therefore $M \models \Delta_2$. By right weakening $M \models \Delta_1, \Delta_2, \Delta_3$.
- Case 2: $M \models \Delta_1, \Delta_3$. In this case, the claim follows directly from right weakening.

Entailment, validity, and satisfiability

The semantic entailment relation \models is convenient for expressing validity and unsatisfiability. Before we explain this, we introduce two abbreviations: we write

 $= \Delta$

 $\Gamma \models$

instead of $\{\} \models \Delta$, and

instead of $\Gamma \models \{\}$.

Entailment, validity, and satisfiability

Observation: we have

- $\blacksquare \models A$ if and only if A is valid, and
- $\Gamma \models$ if and only if Γ is unsatisfiable.