
Propositional logic (revision)
& semantic entailment
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Reading

The background reading for propositional logic is
Chapter 1 of Huth/Ryan. (This will cover
approximately the first three lectures.)
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Logical propositions

The basic building blocks of any logic are logical
formulæ (also called “propositions” or
“sentences”).

Examples:

Propositional logic: p ∧ (p → q) → q, p ∧ ¬p,
(p ∧ ¬q) ∨ (q ∧ ¬p).

Predicate logic: ∀x.∃y : f(x, g(y)) = c.

Modal logic: 2(p → q) → (2p → 2q).
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The language of
propositional logic

Definition. The language of propositional logic
has an alphabet consisting of

propositional atoms : p, q, r, . . .

connectives : ∧, ∨, →, ¬, >, ⊥

auxiliary symbols: ( , )
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The language of
propositional logic

The connectives carry the traditional names:

∧ and conjunction
∨ or disjunction
→ if ... then ... implication
¬ not negation
> true
⊥ false
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Syntax of formulæ

Definition. The formulæ of propositional logic,
for a given set {p, q, r, . . .} of propositional
atoms , is given as follows:

every propositional atom a formula, and so
are > and ⊥;

if A and B are formulæ, then so are (A ∧ B)
and (A ∨ B) and (A → B);

if A is a formula, then so is (¬A);

(We shall often omit brackets if the meaning is
clear.) – p. 6/34



Meta-variables and
object-variables

The greek letters A,B, . . . are
meta-variables : they are not formulæ—they
part of our mathematician’s English.

By contrast, the propositional atoms p, q, . . .
are object-variables : they are formulæ.
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Meta-language and
object-language

Consider the following sentence:

The Java program P runs faster than the
Java program Q, because P has a better
handling of the variable counter.

Java is the object-language, i.e. the language
about which we speak. counter is an
object-variable, because it belongs to Java.

IT-English is the meta-language, i.e. the
language in which we speak. P and Q are
meta-variables.
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Meta-language and
object-language

Back to logics:

Mathematician’s (or logician’s) English (or
German or. . . ) is our meta-language.
A,B, . . . are meta-variables.

Formulæ and similar things form the
object-language. p, q, . . . are object-variables.
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Semantics
So far, we have discussed the syntax , i.e. the
rules defining the language (of formulæ). But
what is the meaning of a formula?

Semantics is the study of meanings.
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Semantics
For example, in computability theory, the
meaning of a program (or Turing machine or
abacus machine...) is a function from the
natural numbers to the natural numbers.

English sentences also have a meaning (but it
is extremely hard to capture mathematically).
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Semantics of logical
formulæ

In logics, meaning is often described by a
satisfaction relation

M |= A

that describes when a situation M satisfies a
formula A.

It varies between logics what formulæ and
situations are.
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Situations

Definition. A situation M in propositional logic
(also called “valuation”) assigns to each
propositional atom p a value [[p]]M ∈ {0, 1}.
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The satisfaction
relation

Definition. The satisfaction relation |= is
defined as follows:

M |= A ∧ B iff M |= A and M |= B

M |= A ∨ B iff M |= A or M |= B

M |= A → B iff whenever M |= A then M |= B

M |= ¬A iff M 6|= A

M |= > always

M |= ⊥ never

M |= p iff [[p]]M = 1
– p. 14/34



The satisfaction
relation

Definition. A situation M is said to satisfy a
formula A if M |= A.

Definition. A situation M is said to satisfy a set
Γ of formulæ if M satisfies every formula in Γ. In
this case, we write

M |= Γ.
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Models

Definition.

A situation M that satisfies a formula A is
called a model of A.

A situation M that satisfies a set of formulæ Γ
is called a model of Γ.
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Examples

Let M be a situation such that

M |= p M 6|= q M |= r.

Which of the following entailments hold?

1. M |= p ∧ ¬q

2. M |= q ∨ ¬r

3. M |= p → q

4. M |= q → q
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Truth-table semantics
The satisfaction relation we have just seen can
also be presented by using truth-tables:

A B A ∧ B

0 0 0

0 1 0

1 0 0

1 1 1

A B A ∨ B

0 0 0

0 1 1

1 0 1

1 1 1

A B A → B

0 0 1

0 1 1

1 0 0

1 1 1

A ¬A

0 1

1 0

Exercise: formalize this.
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Validity

Definition. A propositional formula A is called
valid (or a tautology ) if it holds in every
situation, i.e.

M |= A for all situations M.

Example. Which of the formulæ below are valid?

1. (p → q) → ((q → r) → (p → r))

2. p ∨ q ∨ ¬r
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Exercise
Show that the formulæ below are tautologies
(where 2 ∈ {∧,∨}) and A ↔ B is defined as
(A → B) ∧ (B → A):

((A2B)2C) ↔ (A2(B2C)) (associativity)

(A2B) ↔ (B2A) (commutativity)

(A ∧ >) ↔ A (A ∨ ⊥) ↔ A (neutrality)

(A ∧ (B ∨ C)) → ((A ∧ B) ∨ C) (linear distributivity)

(¬A ∧ A) → ⊥ (contradiction)

> → (A ∨ ¬A) (excluded middle)

A ↔ A2A (idempotency)

A → >

⊥ → A (ex falso quodlibet).

Remark: this is an axiomatization of Boolean lattices.
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Exercise
Show that the formulæ below are tautologies:

(A ∧ B) ↔ ¬(¬A ∨ ¬B) (DeMorgan)
(A ∨ B) ↔ ¬(¬A ∧ ¬B) (DeMorgan)

> ↔ ¬⊥ (DeMorgan)
⊥ ↔ ¬> (DeMorgan)

(A → B) ↔ (¬A ∨ B)

(¬A → ⊥) → A (reductio ad absurdum)
(¬B → ¬A) → (A → B) (contrapositive)

((A → B) → A) → A (Pierce’s law).
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Satisfiability

Definition. A set of formulæ Γ is called
satisfiable if it has a model, i.e.

M |= Γ for some situation M.

Example: Which of the sets below are
satisfiable?

{p,¬q}

{p,¬p}
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Semantic entailment

Definition. Let Γ = {A1, . . . , An} be a set of
formulæ, and B a formula. We say that Γ
semantically entails B and write

Γ |= B

if every model of {A1, . . . , An} is also a model of
B.

Remark: sometimes, “entailment” is called “consequence”.

Warning: Γ |= B differs from M |= B; these conflicting uses of the symbol |= are

traditional.
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Example

Which of the following entailments hold?

{p, q, r} |= q

{} |= p ∨ ¬p

{p → q} |= p

{p ∧ ¬p} |= q
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Exercise: natural
deduction

Prove the following facts about semantic
entailment. (These are the rules of natural
deduction , which we shall study soon. The
comma stands for union of sets of formulæ.)

Γ |= A Γ |= B
∧i

Γ |= A ∧ B

Γ |= A ∧ B
∧e

Γ |= A

Γ |= A ∧ B
∧e

Γ |= B

Γ, A |= B
→ i

Γ |= A → B

Γ |= A → B Γ |= A
→ e

Γ |= B

Γ |= ⊥
⊥e

Γ |= A

Γ,¬A |= ⊥
RAA

Γ |= A
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Example: modus
ponens

We prove

Γ |= A → B Γ |= A
→ e

Γ |= B

This is the famous modus ponens already
known to the ancient Greeks.

Proof: Suppose that M |= Γ. Because of the two
assumptions, we have M |= A → B and M |= A.
By definition, the statement M |= A → B means
that M |= B whenever M |= A. So M |= B.
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Multiple conclusions

Definition. Let Γ = {A1, . . . , An} and
∆ = {B1, . . . , Bm} be sets of formulæ. We say
that Γ semantically entails ∆ and write

Γ |= ∆

if every model of A1, . . . , An satisfies at least one
Bi in ∆.
Note that this is the same as saying that

A1 ∧ . . . ∧ An |= B1 ∨ . . . ∨ Bm.
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Examples

Which of the following entailments hold?

{p ∨ q} |= {p, q}

{} |= {p, q → p}

{p,¬p} |= {}

{} |= {p,¬p}
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Example: right
weakening

Claim: whenever Γ |= ∆ and ∆ ⊆ ∆′, it holds that
Γ |= ∆′. Short notation:

Γ |= ∆
if ∆ ⊆ ∆′.

Γ |= ∆′

Is the claim true?
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Exercise: sequent
calculus

Prove the following. (These are rules of the
sequent calculus , which we shall study later in
this course.)

Ax

A |= A

Γ2 |= ∆1, A, ∆3 Γ1, A, Γ3 |= ∆2

Cut

Γ1, Γ2, Γ3 |= ∆1, ∆2, ∆3

Γ, A, B |= ∆
L∧

Γ, A ∧ B |= ∆

Γ |= A, ∆ Γ′ |= B, ∆′

R∧
Γ, Γ′, |= A ∧ B, ∆, ∆′

Γ, A |= ∆ Γ′, B |= ∆′

L∨
Γ, Γ′, A ∨ B |= ∆, ∆′

Γ |= A, B, ∆
R∨

Γ |= A ∨ B, ∆

Γ |= A, ∆ Γ′, B |= ∆′

L →
Γ, Γ′, A → B |= ∆, ∆′

Γ, A |= ∆, B
R →

Γ |= A → B, ∆
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Example: the cut rule

The famous cut rule, which we shall study in
depth later, states that whenever

Γ2 |= ∆1, A,∆3 and Γ1, A,Γ3 |= ∆2,

then
Γ1,Γ2,Γ3 |= ∆1,∆2,∆3.

Short notation:

Γ2 |= ∆1, A,∆3 Γ1, A,Γ3 |= ∆2 .
Γ1,Γ2,Γ3 |= ∆1,∆2,∆3
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Validity of the cut
rule

Suppose that Γ2 |= ∆1, A,∆3 and Γ1, A,Γ3 |= ∆2.
To see that Γ1,Γ2,Γ3 |= ∆1,∆2,∆3, assume that
M |= Γ1,Γ2,Γ3. Because Γ ` Γ2, the situation M

satisfies at least one formula in ∆1, A,∆3.

Case 1: M |= A. In this case, we have
M |= Γ1, A,Γ3, and therefore M |= ∆2. By
right weakening M |= ∆1,∆2,∆3.

Case 2: M |= ∆1,∆3. In this case, the claim
follows directly from right weakening.
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Entailment, validity,
and satisfiability

The semantic entailment relation |= is convenient
for expressing validity and unsatisfiability. Before
we explain this, we introduce two abbreviations:
we write

|= ∆

instead of {} |= ∆, and

Γ |=

instead of Γ |= {}.
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Entailment, validity,
and satisfiability

Observation: we have

|= A if and only if A is valid, and

Γ |= if and only if Γ is unsatisfiable.
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