
Revision

. – p.1/31



The exam
Two-hour written exam.

Full marks will be given to correct answers to
THREE questions. Only the best three
questions will contribute toward the
assessment.

. – p.2/31



Enumerability & diagonalization

. – p.3/31



Enumerability:
characterizations

You can use the following fact from the lecture:
let A be a set. The following are equivalent:

1. A is the range of a function f : N → A from
the natural numbers to A (informally, A can
be written as a list with holes).

2. A has an encoding, i.e., there is a total
injective function c : A → N into the natural
numbers. (For a ∈ A, the number c(a) is
called the code of a.)

. – p.4/31



Pairs of integers

N × N
encoding

-�
enumeration

N

For example:

Cantor’s Zig-Zag;

The encoding c(x, y) = 2x · 3y.

. – p.5/31



Useful facts
To show that a set is enumerable, you can use
the following useful facts (this used to be an
exercise):

1. If A is enumerable and there is a surjective
function A → B, then B is enumerable.

2. If B is enumerable and there is a total
injective function A → B, then A is
enumerable.

Next follow a couple of exercises, with solutions,

that show the usefulness of these two facts.
. – p.6/31



Exercise
Show that the set Q+ of positive rational
numbers is enumerable.

Solution: every positive rational number has the form x/y,
where x and y are natural numbers and y 6= 0. So the
function f : N × N → Q+ given by

f(x, y) =







x/y if y 6= 0

undefined otherwise

is surjective. So, to see that Q+ is enumerable, it suffices to

show that N × N is enumerable, which we know to be true.
. – p.7/31



Exercise
Let A and B be enumerable sets such that
A ∩ B = ∅. Show that A ∪ B is enumerable.

Solution: If A and B are enumerable, we have encodings
(= total injective functions) f : A → N and g : B → N .
Consider the following function h : A ∪ B → N × N :

h(x) =







(1, x) if x ∈ A

(2, x) if x ∈ B

Obviously, h is injective. So, because N ×N is enumerable,

A ∪ B too is enumerable.
. – p.8/31



The diagonal
argument

The diagonal argument, in its most intuitive form, shows that for

every enumeration f1, f2, f3, . . . of functions, we can construct a

new function g which is not in that enumeration, by letting g(n)

be any value different from fn(n), e.g.,

n 1 2 3 4 5 . . .

f1(n) 12 9 0 8 ⊥ . . .

f2(n) 0 ⊥0 1 0 3

f3(n) 1 4 9⊥ 2 ⊥

f4(n) 4 7 1 78 8

f5(n) 2 3 5 7 23

...
... . – p.9/31



Automata & languages

. – p.10/31



Automata &
languages: summary

DFA′s
are

-�
powerset constr.

NFA′s - reg. grammar

ε-NFA’s

are

?
�

�

extended ps. constr.
reg. language

?

. – p.11/31



Exercise
Use the powerset construction to transform the
following NFA into a DFA (you can present the
DFA as a transition table or as a transition graph).

0 1

→ A {A,B} {A,C}

∗ B {B,C} {}

∗ C {} {B,C}

. – p.12/31



Solution

0 1

{} {} {}

→ {A} {A,B} {A,C}

∗ {B} {B,C} {}

∗ {C} {} {B,C}

∗ {A,B} {A,B,C} {A,C}

∗ {A,C} {A,B} {A,B,C}

∗ {B,C} {B,C} {B,C}

∗ {A,B,C} {A,B,C} {A,B,C}

. – p.13/31



Exercise
Give the regular expression for the NFA below.

0 1

→ X {X} {Y }

∗ Y {Y } {Z}

Z {Z} {X}

. – p.14/31



Solution (part 1/2)
The regular grammar corresponding to the NFA is

X → 0X|1Y

Y → 0Y |1Z|ε

Z → 0Z|1X

The corresponding equation system is

(1)X = 0X + 1Y

(2)Y = 0Y + 1Z + ε

(3)Z = 0Z + 1X

where X is the start symbol. . – p.15/31



Solution (part 2/2)

(1)X = 0X + 1Y (2)Y = 0Y + 1Z + ε (3)Z = 0Z + 1X

Because X is the start symbol, we are interested in the solution for X.
We get

(4)Z = 0∗1X from (3)

(5)Y = 0Y + 10∗1X + ε from (2, 4)

(6)Y = 0∗(10∗1X + ε) = 0∗10∗1X + 0∗ from (5)

(7)X = 0X + 1(0∗10∗1X + 0∗) = 0X + 10∗10∗1X + 10∗ from (1, 6)

= (0 + 10∗10∗1)X + 10∗ from (1, 6)

(8)X = (0 + 10∗10∗1)∗10∗ from (7)

. – p.16/31



Exercise
Consider the grammar

S → aS | aSbS | ε.

Show that this grammar is ambiguous.

Solution: E.g., there are two parse trees for the

word aab.

. – p.17/31



Computability

. – p.18/31



Overview

Turing-computable

recursive

-

abacus-computable

6

�

. – p.19/31



Exercise
The predecessor function pred takes one argu-

ment y and returns y− 1 if y is greater than 0, and

returns 0 otherwise. Show that pred is primitive

recursive.

. – p.20/31



Solution (part 1/3)

Solution: Naively, we want to define pred by
primitive recursion, so we need a 0-place
function f and a 2-place function g such that

pred(0) = f()

pred(s(y)) = g(y, pred(y))

At a first glance, this seems to be solved by

f() = 0 and g = π2
1. But we don’t have any 0-

place functions!

. – p.21/31



Solution (part 2/3)

We address this issue by defining, by primitive
recursion, an auxiliary function

aux(x, 0) = f(x)

aux(x, s(y)) = g(x, y, aux(x, y))

with a dummy variable x, and let f(x) = z(x)
and g = π3

2. That is, aux = Pr[z, π3
2]. Then we let

pred(y) = aux(y, y),

i.e., pred = Cn[aux, π1
1, π

1
1].

. – p.22/31



Solution (part 3/3)

However, saying that pred is primitive recursive
because it can be defined by primitive recursion
as follows:

pred(0) = 0

pred(s(y)) = π2
1(y, pred(y))

is morally the right answer, so I would accept it.

. – p.23/31



Exercise
Show that the factorial function is primitive recursive. (You
can assume that multiplication is primitive recursive.)

Solution:

fac(0) = 1 fac(s(y)) = (s(y)) ∗ fac(y)

That is,

fac(0) = 1 fac(s(y)) = g(y, fac(y))

where g = Cn[∗,Cn[s, π2
1 ], π

2
2 ]. Like for pred, we have the is-

sue with the missing 0-place function (we don’t have a func-

tion f() = 1), but it is acceptable to gloss over that.
. – p.24/31



Exercise
Suppose that the function f(x, y) looks like this:

0 1 2 3 4 . . . y

0 1 2 3 4 5 . . .

1 7 0 7 0 7 . . .

2 ⊥ 0 ⊥ 0 ⊥ . . .

3 0 ⊥ 0 ⊥ 0 . . .
...

x

What are Mn[f ](0), Mn[f ](1), Mn[f ](2), Mn[f ](3)?
. – p.25/31



Solution
Mn[f ](0) = ⊥, Mn[f ](1) = 1, Mn[f ](2) = ⊥,

Mn[f ](3) = 0.

. – p.26/31



More exercises
To get the exams of the last two years (Prof.
Pym): enter

http://www.bath.ac.uk/library/exampapers/search.html

and search for “comp0020”.

2002 exam: Exercise 1(f), 2(a-f) (“countable”
= “enumerable”), 3(a), 4(a-c), 5(a-d) (except
5c).

2003 exam: 2(a-b), 3(a-d) (“partial recursive”
= “recursive”), 4(a-d).

. – p.27/31

http://www.bath.ac.uk/library/exampapers/search.html


Addendum: complete proof of the
last theorem of the last lecture

. – p.28/31



Theorem

Theorem. Let R be 1-place relation on the
natural numbers. The following are equivalent:

1. R is semi-recursive;

2. R is the empty set, or recursively enumerable
by a total recursive function;

3. R is recursively enumerable.

. – p.29/31



Proof (part 1/2)
That (2) implies (3) is trivial. To see that (1) implies (2), suppose that R is semi-recursive.
If R is empty, we are done, so suppose R non-empty. Let z ∈ R, and suppose that R is
the domain of some recursive function f computed by the TM with code m. Define
another function

g(x, t) =

��
�

�

x iff stdh(m, x, t) = 0

z otherwise

We have R = domain(f) = range(g). Letting

h(y) = g(first(y), second(y)),

R is the range of h.

. – p.30/31



Proof (part 2/2)
To see that (3) implies (1), assume that R is the range of the k-place recursive function
g. Then

R(y) iff ∃x1. · · · .∃xk.g(x1, . . . , xk) = y.

The (k+1)-place relation g(x1, . . . , xk) = y is easily seen to be semi-recursive. Because

semi-recursive relations are closed under ∃ (earlier proposition), R is semi-recursive.

. – p.31/31


	
	The exam
	
	Enumerability: characterizations
	Pairs of integers
	Useful facts
	Exercise
	Exercise
	The diagonal argument
	
	Automata & languages: summary
	Exercise
	Solution
	Exercise
	Solution (part 1/2)
	Solution (part 2/2)
	Exercise
	
	Overview
	Exercise
	Solution (part 1/3)
	Solution (part 2/3)
	Solution (part 3/3)
	Exercise
	Exercise
	Solution
	More exercises
	
	Theorem
	Proof (part 1/2)
	Proof (part 2/2)

