About the exam

m | will hand out example exam guestions next week.
m Also relevant: the exercises on my slides.

m Also worth looking at: exercises in
Boolos/Burgess/Jeffrey.

| |t is worth looking at the exams of the last two years
(Prof. Pym): enter

http://ww. bat h. ac. uk/ i brary/ exanpapers/search. ht m

and search for “comp0020”. Ca. half of the questions
are relevant for this year’s exam. My exam will have
fewer essay-style questions, more calculations.

.—p.1/21

http://www.bath.ac.uk/library/exampapers/search.html

Consequences of the
circle

Turing-computable
recursive

7

abacus-computable

Universal function

Definition. A (k£ + 1)-place recursive function £
IS called a universal function Iif, for every
k-place Turing-computable function g, there Is an

m such that

F(m,z) = g(x),

where z stands for x4, ..., z.

Universal function

Theorem. A universal function exists.

Proof. If g iIs computed by the TM with code m,
then ¢(x) is equal to the function

F(m, x) = value(conf (m, x, halt(m, x))).

defined in the last lecture.

A universal Turing
machine

mLet U be the TM that computes our universal
function F'(m, x).

m So, for every TM M with code m, instead of
running M on x, we can run U on (m, x).

m U Is called a universal Turing machine (first
discovered by Turing in 1937/38, before the
age of general-purpose computers).

m This was the first theoretical assurance that a
general-purpose computer could be designed
that could mimic any special-purpose
computer.

Kleene’'s normal form
theorem

Theorem. Every recursive function can be
obtained from the basic functions (zero,
successor, projections) by composition, primitive
recursion, and at most one use of
minimization.

Assuming Church’s thesis, this means that “every
effectively computable function requires not more
than one while-loop”.

Proof. Let g be a recursive function, and let m be
the code of the TM that computes ¢g. So we have

g(x) = F(m,z) = value(conf (m, z, halt(m, x))).

The functions value and conf do not involve min-
Imization. The function halt Is defined by min-
Imization over the function stdh, and the latter
does not involve minimization.

Stability under
perturbation

Theorem. The same functions are Turing computable
whether one defines TM’s to have

1. atape infinite in both directions or in only one direction;

2. only two symbols (0 and 1) or a greater finite number of
symbols that can be on the tape;

3. atwo-dimensional grid or an ordinary tape.

One says Turing machines are stable under perturbation

of definition. This is typical for a natural class of objects.

.—p.8/21

Proof (part 1/2)

To understand the stability theorem, recall the
cycle of simulations:

Turing-computable

A K

A recursive

5

abacus-computable

Proof (part 2/2)

1. The Turing machine used in (A) to simulate
an abacus machine never needs to go left of
the starting square.

2. Minor changes in the coding using in (C)
show that we can cope with any finite number
of tape symbols.

3. Showing this is trickier and beyond this
lecture.

Semi-recursive relations
(= recursively enumerable relations)

Basic iIdea

Intuitively, a set A is called semi-decidable if
there Is a Turing machine (or abacus machine or
recursive function. . .) that

mhaltsif z € A, and
m does not halt otherwise.

Semi-recursive
relations

Here Is the technical version of that basic idea:

Definition. A relation R Is called semi-recursive
If and only If it Is the domain of some recursive
function f—that is, If

R(x) iff f(x)is defined.

The set £ of even numbers i1s semi-recursive. To
see this, consider the function

1 if rem(x,2) =0
undefined otherwise.

\

Because rem IS recursive and we use definition by
cases, f Isrecursive. The set E Is semi-recursive,
because It Is the domain of f.

Recursive vs.
semi-recursive

Every recursive relation is semi-recursive. To see
this, let R be any relation, and define

,

1 if R(x)
undefined if not R(x).

\

This Is definition by cases, so f IS a recursive
function. And x € R Iff x IS In the domain of f.

Recursive vs.
semi-recursive

For any m, let f,, be the function computed by
the TM with code m. Recall the relation self,
which we defined as follows

self (x) iff f.(z) is defined.

This relation self Is not recursive (as shown
earlier), but semi-recursive.

Proof. self is the domain of F'(x,x), where F'is
the universal function.

Semi-recursive
relations and -

Proposition. Let R by a k-place relation. The
following are equivalent:

1. R Is semi-recursive,
2. for some recursive (k + 1)-place relation S,

R(z) iff 3t.S(z, 1).

Semi-recursive
relations and -

Proposition. Let S(x,y) be a semi-recursive
(k + 1)-place relation, and let R be the k-place

relation R Is given by

R(x) iff Fy.S(z,y)

Then R too IS semi-recursive.

Proof. See Boolos/Burgess/Jeffrey.

Recursively
enumerable sets

Definition. A set A Is called recursively
enumerable If it Is the range of a recursive
function f : N — N.

(So a subset A of N Is recursively enumerable if
It IS enumerable, and the enumeration function Is
recursive.)

The set £ of even numbers Is enumerable,
because It Is the range of the recursive function

g(z) =2-x.
Alternatively, we could use the enumeration

T if rem(x,2) =0
undefined otherwise.

\

(This corresponds to a “list with holes”.)

Theorem

Theorem. Let R be 1-place relation on the
natural numbers. The following are equivalent:

1. R IS semi-recursive;

2. R Is the empty set, or recursively enumerable
by a total recursive function;

3. R Is recursively enumerable.

	About the exam
	Consequences of the circle
	Universal function
	Universal function
	A universal Turing machine
	Kleene's normal form theorem
	Proof
	Stability under perturbation
	Proof (part 1/2)
	Proof (part 2/2)
	
	Basic idea
	Semi-recursive relations
	Example
	Recursive vs. semi-recursive
	Recursive vs. semi-recursive
	Semi-recursive relations and $exists $
	Semi-recursive relations and $exists $
	Recursively enumerable sets
	Example
	Theorem

