
Closing the circle

. – p.1/26

Closing the circle

Turing-computable

recursive

next
-

abacus-computable

done

6

� done

. – p.2/26

Overview
1. Encode configurations of TM’s.

2. Encode TM’s themselves.

3. Define a primitive recursive function

conf (m,x, t)

that yields the configuration reached by the
TM with code m on input x after time t.

4. Use conf (m,x, t) to define the recursive
function computed by the TM.

. – p.3/26

The Wang encoding
for tapes

To encode the tape, we use

a left number, which results from interpreting
the tape left of the scanned square as a
binary numeral, prefixed by infinitely many
superfluous 0’s;

a right number, which results from
interpreting the rest of the tape, consisting of
the scanned square and the portion to its
right, as a binary numeral written
backwards.

. – p.4/26

Encoding the initial
tape

For the sake of presentation, suppose that the TM
takes only one argument, x.

Then the initial tape has one block of x + 1 strokes and
is otherwise blank, and the leftmost stroke is scanned.

So the left number is 0, and the right number is

20 + 21 + 22 + · · · + 2x−1 + 2x = 2x+1
−̇1.

We define a primitive recursive function

start(x) = 2x+1
−̇1.

. – p.5/26

Computing the
scanned symbol

Let r be the right number. The scanned symbol is

0 if the binary representation of r ends with 0,
i.e. if r is even.

1 if the binary representation of r ends with 1,
i.e. if r is odd.

So the scanned symbol is the remainder of
dividing r by 2:

scan(r) = rem(r, 2).

As seen earlier, rem is primitive recursive; so
the same is true for scan.

. – p.6/26

Writing a 0

Suppose the action is W0.

The left number remains the same.

If the scanned square already contains 0, the
right number remains the same; otherwise, it
is decreased by 1.

Letting p be the left number and r the right
number, we have

newleft0(p, r) = p

newright0(p, r) = r−̇scan(r).

. – p.7/26

Writing a 1

In a similar way, we get a primitive recursive
functions for writing a 1:

newleft1(p, r) = p

newright1(p, r) = r + 1−̇scan(r).

. – p.8/26

Moving left: new left
number

Let p be the pre-move left number, and let p∗

be the post-move left number.

The binary representation of p∗ is obtained by
chopping of the last 0 or 1.

This means that p∗ is p divided by 2 (and
rounded down), so p∗ is given by

newleftL(p, r) = quo(p, 2).

. – p.9/26

Moving left: new
right number

Let r be the pre-move right number, and let r∗

be the post-move right number.

Let p0 be the symbol to the left of the scanned
square.

The binary representation of r∗ is obtained
from the one for r by appending p0, so

r∗ = 2r + p0.

We have p0 = rem(p, 2); so r∗ is given by

newrightL(p, r) = 2r + rem(p, 2).
. – p.10/26

Moving right

By reversing the rôles of p and r, we get the
functions for moving right:

newleftR(p, r) = 2p + rem(r, 2)

newrightR(p, r) = quo(r, 2).

. – p.11/26

Codes for the actions
Before we proceed, we encode the actions as
follows:

action code
W0 0
W1 1
L 2
R 3.

. – p.12/26

The action as an
extra argument

We can now define new versions of newleft and
newright that take the action as an extra
argument:

newleft(p, r, a) =















p if a = 0 or a = 1

quo(p, 2) if a = 2

2p + rem(r, 2) if a = 3

This is a definition by cases, so newleft is prim-

itive recursive. Similarly for newright .

. – p.13/26

Encoding
configurations

A configuration consists of a tape and a state.

So a configuration can be represented as a triple
(p, q, r), where is p and r are left and right numbers,
and q is a state.

We can use the primitive recursive encoding
c = triple(p, q, r) = 2p

· 3q
· 5r and its primitive recursive

decodings

left = lo(c, 2)

state = lo(c, 3)

right = lo(c, 5).
. – p.14/26

Extracting the final
value

Suppose that the TM halts in a standard final
configuration c = triple(p, q, r).

If the result is y, then there is a single block
with y + 1 strokes, which are the binary
representation of r; so

r = 2y+1
−̇1.

So y = lo(r + 1, 2)−̇1, i.e. y is given by the
primitive recursive function

value(c) = lo(right(c) + 1, 2)−̇1.
. – p.15/26

Testing for standard
final configurations

In a standard final configuration c = triple(p, q, r),
we have p = 0, and the previous slide implies that

∃y< r.r = 2y+1
−̇1.

So c represents a s.f.c. iff the relation

is_std(c) iff left(c) = 0 and

∃y< right(c).right(c) = 2y+1
−̇1

holds. Because the ∃ is bounded, this relation is

primitive recursive.
. – p.16/26

Encoding TM’s

We have seen an encoding of TM’s before; now
we use an improved version. Recall that a TM
can be presented by a transition table, e.g.

0 1

q1 W1q1 Lq2

q2 W1q2 Lq3

q3 W1q3

We use the convention that q1 is the starting state.

. – p.17/26

Encoding TM’s
By introducing a halting state q0, we can assume that the
transition table is defined everywhere. E.g. the table from
the previous slide becomes

0 1

q0 W0q0 W1q0

q1 W1q1 Lq2

q2 W1q2 Lq3

q3 W1q3 W1q0.

The table can be written as a list, e.g.

(W0, q0,W1, q0,W1, q1, L, q2,W1, q2, L, q3,W1, q3,W1, q0). . – p.18/26

Encoding TM’s
The entries of the list can be represented by natural
numbers, e.g.

(W0, q0,W1, q0,W1, q1, L, q2,W1, q2, L, q3,W1, q3,W1, q0)

becomes

(0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 1, 0).

This list can be encoded into a natural number m which is
the code of the TM, e.g.

20
· 30

· 51
· 70

· 111
· 131

· 172
· · · · .

. – p.19/26

Using the encoding

(W0, q0,W1, q0,W1, q1, L, q2,W1, q2, L, q3,W1, q3,W1, q0)

(0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 1, 0).

The action when scanning symbol i in state q is given
by entry number 4q + 2i.

The next state is given by entry number 4q + 2i + 1.

We have primitive recursive functions

action(m, q, r) = entry(m, 4q + 2 · scan(r))

newstate(m, q, r) = entry(m, 4q + 2 · scan(r) + 1).

. – p.20/26

Configuration after t
steps

Next, we define a primitive recursive function
conf (m,x, t) that returns the configuration
reached by TM with code m on input x after t

steps.

After 0 steps we have

conf (m,x, 0) = triple(0, 1, start(x)).

We define

conf (m,x, t + 1) = newconf (m, conf (m,x, t)).

. – p.21/26

Defining newconf (m, c)

1. Apply left , state, and right to c to obtain the
left number p, the number q of the state, and
the right number r.

2. Apply action and newstate to (m, q, r) to
obtain the number a of the action, and the
number q∗ of the new state.

3. Let newconf (m, c) =
triple(newleft(p, r, a), q∗, newright(p, r, a)).

We used only composition, so newconf is primitive

recursive.
. – p.22/26

Halting in standard
configuration

The TM is halted when state(conf (m,x, t)) = 0.

So, letting

stdh(m,x, t) =















0 if state(conf (m,x, t)) = 0

and is_std(conf (m,x, t))

1 otherwise,

the machine is halted in a standard configuration iff
stdh(m,x, t) = 0.

This is a definition by cases, so the function stdh is
primitive recursive.

. – p.23/26

The time of halting

The time (if any) when the machine halts in a
standard configuration is

halt(m,x) =























the least t if such a t

such that exists
stdh(m,x, t) = 0

undefined otherwise.

The function halt is recursive, because it is de-

fined by minimization over a (primitive) recursive

function (stdh).
. – p.24/26

Putting it all together

Let F (m,x) = value(conf (m,x, halt(m,x))).

F (m,x) is the value of the function computed
by the TM with code m for argument x.

F is recursive, because it is defined by
composition from recursive functions.

Let f(x) = F (m,x).

f is the function computed by the TM with
code m, and f is recursive.

. – p.25/26

Theorem
So we have proved:

Theorem. Every Turing-computable function is
recursive.

This closes the circle.

. – p.26/26

	
	Closing the circle
	Overview
	The Wang encoding for tapes
	Encoding the initial tape
	Computing the scanned symbol
	Writing a 0
	Writing a 1
	Moving left: new left number
	Moving left: new right number
	Moving right
	Codes for the actions
	The action as an extra argument
	Encoding configurations
	Extracting the final value
	Testing for standard final configurations
	Encoding TM's
	Encoding TM's
	Encoding TM's
	Using the encoding
	Configuration after t steps
	Defining $mathit {newconf}(m,c)$
	Halting in standard configuration
	The time of halting
	Putting it all together
	Theorem

