
Recursive functions:
a reminder

. – p.1/34

Primitive recursion,
informally

To define a function h(x, z) by primitive recursion,
we need to describe what happens

in the case where z = 0, and

in the case where z is of the form y + 1 for
some y, using the value of h(x, y).

. – p.2/34

Example:
multiplication

Below we have a primitive recursive definition of
multiplication, in terms of + .

x · 0 = 0

x · (y + 1) = x · y + x

Note that this looks almost like a realistic computer
program. An even more realistic version might look like

mult(x, y) =

if (y = 0) then 0 else mult(x, y − 1) + x.

. – p.3/34

Primitive recursion,
formally

Definition. If f : N k → N and g : Nk+2 → N ,
then the function h : N k+1 → N is said to be
defined by primitive recursion from f and g if

h(x, 0) = f(x)

h(x, s(y)) = g(x, y, h(x, y))

where x stands for x1, . . . , xk.

. – p.4/34

Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions is defined as follows:

The zero function z, the successor function
s, and all projection functions pk

i are primitive
recursive.

Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.

. – p.5/34

Towards general
recursion

Some functions (e.g. the Ackermann function)
are not primitive recursive.

Informally, this is because primitive recursive
functions do not allow while-loops, i.e.
constructs of the form

“WHILE some condition holds, DO X”.

Formally, instead of WHILE loops, we add a
construct called minimization.

. – p.6/34

Definition of
minimization

The minimization of a function f : N k+1 → N is
defined as follows (where x stands for x1, . . . , xk):

Mn[f](x) =















y
if f(x, y) = 0 and for all i < y,
f(x, i) is defined and 6= 0

⊥ otherwise

. – p.7/34

Algorithm for Mn[f](x)

The algorithm for Mn[f](x) looks as follows:

y = 0;
while(not(f(x,y) = 0)) {

y = y+1;
}
return y;

This can fail to halt for two reasons: either be-

cause f(x, i) fails to halt for some i, or because

f(x, i) 6= 0 for all i.
. – p.8/34

Definition of
recursive functions

Definition. The class of recursive functions is
defined as follows:

The functions s and z are recursive, and so
are all projections pk

i .

Functions built from recursive ones by using
composition Cn or primitive recursion Pr are
also recursive.

Functions built from recursive ones by
minimization Mn are also recursive.

. – p.9/34

Recursive relations (Part 1/2)

. – p.10/34

Basic idea
The main idea behind this lecture is the
notion of decidable set (or relation).

Informally, a set A is called effectively
decidable if there is an effective procedure
that returns

“Yes” if x ∈ A, and
“No” if x 6∈ A.

. – p.11/34

Basic idea
We shall deal mainly with the more technical
notion of recursively decidable set, which
establishes a link between sets and total
recursive functions.

In particular, we shall study the important
special case of primitive recursive sets.

These sets are very useful for “using
recursive functions as a programming
language”.

. – p.12/34

Relations
Sets whose elements are pairs (x, y) are
often called relations.

E.g., the lesser-than relation < on N is
represented as the set of pairs

{(x, y) ∈ N × N : x < y}.

If R is a relation, we write R(x, y)
interchangeably with (x, y) ∈ R.

. – p.13/34

k-place relations

More generally, we consider k-place relations,
which are sets whose elements are k-tuples
(x1, x2, . . . , xk).

E.g. the line below is a definition of a 3-place
relation on the natural numbers:

R(x, y, z) iff x = y + z.

. – p.14/34

The characteristic
function of a subset

The following notion establishes an important link
between functions and sets resp. relations:

Definition. The characteristic function of a
subset A of a set B is the function

ξA : B → {0, 1}

given by

ξA(x) =

{

1 if x ∈ A

0 if x 6∈ A.

. – p.15/34

Example

The characteristic function ξ< : N × N → {0, 1}
of the lesser-than relation < on N is given as
follows:

ξ<(x, y) =

{

1 if x < y

0 otherwise.

. – p.16/34

Effectively decidable
relations

The main idea behind this lecture is captured by
the following definition.

Definition. A k-place relation R is called
effectively decidable if there is an effective
procedure that returns

“Yes” (or 1) if R(x1, . . . , xk) holds, and

“No” (or 0) if R(x1, . . . , xk) does not hold;

or, more precisely, if ξR is effectively computable.

. – p.17/34

Recursive relations
To enable technical progress, we shall use a
more specific version of decidability:

Definition. A k-place relation R on the natural

numbers is called recursively decidable, or sim-

ply recursive, if ξR is recursive.

. – p.18/34

“Recursive” vs. “effectively
decidable”

Which of the two claims is true?

1. “Recursive relations are effectively decidable.”

2. “Effectively decidable relations are recursive.”

. – p.19/34

Primitive recursive
relations

Definition. A k-place relation R on the natural
numbers is called primitive recursive if its
characteristic function ξR is primitive recursive

(So every primitive recursive relation is recursive.)

. – p.20/34

Example

The relation below is primitive recursive.

R(y) iff y > 0

ξR is the signum function sg seen earlier, which
can be defined by primitive recursion as follows:

sg(0) = 0

sg(y + 1) = 1.

. – p.21/34

Example

The lesser-than relation < is primitive recursive,
because its characteristic function ξ< can be
written as

sg(y−̇x),

where the function −̇ is defined by primitive
recursion as follows:

x−̇0 = x

x−̇s(y) = pred(x−̇y).

. – p.22/34

Example

The identity relation, which holds if and only if

x = y,

is primitive recursive. Its characteristic function is

sg(x−̇y) + sg(y−̇x).

. – p.23/34

Boolean connectives
for relations

The conjunction of two relations R1 and R2 is the
relation S defined as follows:

S(x1, . . . , xk) iff R1(x1, . . . , xk) and R2(x1, . . . , xk).

The disjunction of two relations R1 and R2 is the
relation S defined as follows:

S(x1, . . . , xk) iff R1(x1, . . . , xk) or R2(x1, . . . , xk).

Remark: this is just new terminology and notation for the

intersection (∩) and union (∪) of sets.

. – p.24/34

Boolean connectives
for relations

The complement of a k-place relation R on
the natural numbers is the relation S defined
as follows:

S(x1, . . . , xk) iff not R(x1, . . . , xk).

. – p.25/34

Boolean connectives
for relations

Proposition. Let R and S be k-place relations
on the natural numbers.

If R and S are (primitive) recursive, then so
are their conjunction and disjunction.

If R is (primitive) recursive, then so is its
complement.

Proof. See lecture.
. – p.26/34

Definition by cases

Definition. A function f(x, y) is given by definition by cases if

f(x, y) =



















g1(x, y) if C1(x, y)
...

gn(x, y) if Cn(x, y),

where g1, . . . , gn are functions, and C1, . . . , Cn are relations that

are

mutually exclusive, i.e., for no x, y do more than one of them

hold, and

collectively exhaustive, i.e., for any x, y at least one of them

holds. . – p.27/34

Example

The maximum function, which returns the larger
of its to arguments, has a convenient definition
by cases:

max(x, y) =











y if x < y

y if x = y

x if x > y.

. – p.28/34

Definition by cases

Proposition.

1. If the functions g1, . . . , gn are recursive and
the relations C1, . . . , Cn are recursive, then f

is recursive.

2. If the functions g1, . . . , gn are primitive
recursive and the relations C1, . . . , Cn are
primitive recursive, then f is primitive
recursive.

Proof. See lecture.
. – p.29/34

A non-recursive
relation

Let f0, f1, f2, . . . be an enumeration of the
recursive functions. (It follows from the exercise
about coding recursive functions that such an
enumeration exists.) The “self-halting” relation
self given by

self (x) iff fx(x) is defined.

is not recursive. This follows from a diagonal ar-

gument (see lecture for proof).

. – p.30/34

Substitution
Given a relation R(y1, . . . , ym) and total functions

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), the relation

R∗(x1, . . . , xn) obtained by substitution from the

fi and R is defined by

R∗(x1, . . . , xn)

iff

R(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

. – p.31/34

Example

The relation R defined as follows

R(x, y, v) iff x · v = y

is obtained by substitution from the identity
relation and the functions

f1(x, y, v) = x · v f2(x, y, v) = y.

. – p.32/34

Substitution

Proposition. Let R∗ be the relation obtained by
substitution from total functions f1, . . . , fm and an
m-place relation R.

If R and the fi are recursive, then R∗ is
recursive.

If R and the fi are primitive recursive, then R∗

is primitive recursive.

Proof. See lecture.
. – p.33/34

Exercise
Let R be a (primitive) recursive two-place
relation. Show that the relations below are
(primitive) recursive:

1. the converse of R, given by S(x, y) iff R(y, x);

2. the diagonal of R, given by D(x) iff R(x, x);

3. for any natural number m, the vertical and
horizontal sections of R, given by

Rm(y) iff R(m, y),

Rm(x) iff R(x,m).

. – p.34/34

	
	Primitive recursion, informally
	Example: multiplication
	Primitive recursion, formally
	Definition of primitive recursive functions
	Towards general recursion
	Definition of minimization
	Algorithm for $Mn [f](x)$
	Definition of recursive functions
	
	Basic idea
	Basic idea
	Relations
	k-place relations
	The characteristic function of a subset
	Example
	Effectively decidable relations
	Recursive relations
	large {	heword {Recursive} vs. 	heword {effectively decidable}}
	Primitive recursive relations
	Example
	Example
	Example
	Boolean connectives for relations
	Boolean connectives for relations
	Boolean connectives for relations
	Definition by cases
	Example
	Definition by cases
	A non-recursive relation
	Substitution
	Example
	Substitution
	Exercise

