Recursive functions:
a reminder



Primitive recursion,
Informally

To define a function h(x, z) by primitive recursion,
we need to describe what happens

m In the case where z = 0, and

m IN the case where z Is of the form y + 1 for
some y, using the value of h(x,y).



Example:
multiplication

Below we have a primitive recursive definition of
multiplication, in terms of + .

x-0=0
r-(y+1)=x-y+uw

Note that this looks almost like a realistic computer
program. An even more realistic version might look like

mult(z,y) =
if (y = 0) then 0 else mult(x,y — 1) + x.

.—p.3/34



Primitive recursion,
formally

Definition. If f : N* — N and g : N**? — N,
then the function h : N**! — N is said to be
defined by primitive recursion from f and g If

h(il?, O) — f(aj)
hz,s(y)) = g(z,y, h(z,y))

where x stands for x4, ..., z;.



Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions iIs defined as follows:

m The zero function z, the successor function
s, and all projection functions p¥ are primitive
recursive.

m Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.



Towards general
recursion

m Some functions (e.g. the Ackermann function)
are not primitive recursive.

m Informally, this Is because primitive recursive
functions do not allow while-loops, I.e.
constructs of the form

“WHILE some condition holds, DO X”.

m Formally, instead of WHILE loops, we add a
construct called minimization.



Definition of
minimization

The minimization of a function f : N**1 — N is
defined as follows (where z stands for x4, ..., x.):

if f(z,y) = 0and forall i <y,
Y f(x,i) is defined and # 0

1 otherwise



Algorithm for Mn|f|(x)

The algorithm for Mn|f|(x) looks as follows:

y = 0;

whil e(not (f(x,y) = 0)) {
y = y+1,

}

return y;

This can fall to halt for two reasons: either be-
cause f(x,:) fails to halt for some ¢, or because
f(x,1) # 0 for all 4.



Definition of
recursive functions

Definition. The class of recursive functions Is
defined as follows:

m The functions s and z are recursive, and so
are all projections p*.

m Functions built from recursive ones by using
composition Cn or primitive recursion Pr are
also recursive.

m Functions built from recursive ones by
minimization Mn are also recursive.

.—p.9/34



Recursive relations (Part 1/2)



Basic 1dea

= The main idea behind this lecture Is the
notion of decidable set (or relation).

m Informally, a set A is called effectively
decidable if there is an effective procedure
that returns

m“Yes”Ifx € A, and

5 “No” if z & A.



Basic idlea

= We shall deal mainly with the more technical
notion of recursively decidable set, which
establishes a link between sets and total
recursive functions.

m [n particular, we shall study the important
special case of primitive recursive sets.

m These sets are very useful for “using
recursive functions as a programming
language”.



Relations

m Sets whose elements are pairs (z,y) are
often called relations.

m E.g., the lesser-than relation < on N is
represented as the set of pairs

{(z,y) € N x N :z <y}

mIf R is a relation, we write R(x,y)
interchangeably with (z,y) € R.



k-place relations

m More generally, we consider k-place relations,
which are sets whose elements are k-tuples

(Il,ZCQ, c .. ,ZEk).

m E.g. the line below Is a definition of a 3-place
relation on the natural numbers:

R(x,y,z) ff x=y+ 2



The characteristic
function of a subset

The following notion establishes an important link
between functions and sets resp. relations:

Definition. The characteristic function of a
subset A of a set B Is the function

fA:BH{Oal}
given by
(1 ifre A
al@) =1, if 2 & A,

\



The characteristic function ¢ : N x N — {0, 1}
of the lesser-than relation < on N Is given as
follows:

,

1 fa<y

E<(,y) = < 0 otherwise.

\



Effectively decidable
relations

The main idea behind this lecture is captured by
the following definition.

Definition. A k-place relation R Is called
effectively decidable if there is an effective
procedure that returns

m“Yes” (or 1) if R(xq,...,x;) holds, and
m “No” (or 0) if R(xq,...,x;) does not hold;

or, more precisely, If £ Is effectively computable.



Recursive relations

To enable technical progress, we shall use a
more specific version of decidabillity:

Definition. A k-place relation R on the natural
numbers is called recursively decidable, or sim-
ply recursive, Iif (i IS recursive.



“Recursive” vs. “effectively
decidable”

Which of the two claims is true?
1. “Recursive relations are effectively decidable.”
2. “Effectively decidable relations are recursive.”



Primitive recursive
relations

Definition. A k-place relation R on the natural
numbers is called primitive recursive If its
characteristic function & IS primitive recursive

(So every primitive recursive relation is recursive.)



The relation below Is primitive recursive.
R(y) iff y>0

£ 1S the signum function sg seen earlier, which
can be defined by primitive recursion as follows:

sg(0) =0
sgly+1) =1.



The lesser-than relation < Is primitive recursive,
because Its characteristic function £ can be

written as

where the function — is defined by primitive
recursion as follows:

r—0 =z

r—s(y) = pred(z—y).



The identity relation, which holds if and only if

L =Y,

IS primitive recursive. Its characteristic function is

sg(z—y) + sg(y—=).



Boolean connectives
for relations

® The conjunction of two relations R; and R; Is the
relation S defined as follows:

S(Q?l, - ,lek) Iff Rl(azl, - ,lek) and RQ(JZl, e ,Cl?k).

®m The disjunction of two relations R; and R, is the
relation S defined as follows:

S(Q?l, - ,xk) Iff Rl(ﬂfl, - ,azk) or RQ(JZl, . ,Cl?k).

Remark: this Is just new terminology and notation for the

Intersection (N) and union (U) of sets.

.—Pp.24/34



Boolean connectives
for relations

m The complement of a £-place relation R on
the natural numbers Is the relation S defined
as follows:

S(lel,...,iljk) Iff not R(Qﬁl,...,ibk).



Boolean connectives
for relations

Proposition. Let R and S be k-place relations
on the natural numbers.

m|f R and S are (primitive) recursive, then so
are their conjunction and disjunction.

m If R Is (primitive) recursive, then so Is Its
complement.

Proof. See lecture.



Definition by cases

Definition. A function f(x,y) is given by definition by cases if

(

g1(x,y) fCi(z,y)
f(z,y) = < '

gn(z,y) IfCh(z,y),

\

where ¢4, ..., g, are functions, and 1, ..., (), are relations that
are

B mutually exclusive, i.e., for no x, y do more than one of them
hold, and

M collectively exhaustive, i.e., for any x, y at least one of them
holds. -



Example

The maximum function, which returns the larger
of its to arguments, has a convenient definition
by cases:

y Ifx <y
max(x,y) =4 y fz=y
x Ifx>uy.



Definition by cases

Proposition.

1. If the functions ¢4, ..., g, are recursive and
the relations (', ..., (), are recursive, then f
IS recursive.

2. If the functions ¢4, ..., g, are primitive
recursive and the relations 'y, ..., C,, are

primitive recursive, then f Is primitive
recursive.

Proof. See lecture.



A non-recursive
relation

Let fy, f1, f2,... be an enumeration of the
recursive functions. (It follows from the exercise
about coding recursive functions that such an
enumeration exists.) The “self-halting” relation
self given by

self (x) iff  f.(z) is defined.

IS not recursive. This follows from a diagonal ar-
gument (see lecture for proof).



Substitution

Given a relation R(y1,...,y,) and total functions
filxy, ..., xn), ..., fm(x1,...,2,), the relation
R*(z1,...,x,) obtained by substitution from the
f; and R Is defined by

R*(Qil, “ o ,ZIZn)
Iff
R(fi(x1,. .. xn)y ooy [, x0)).



Example

The relation R defined as follows
R(x,y,v) Iff x-v=y

IS obtained by substitution from the identity
relation and the functions

fl(iU,y,U):Q?'?} fQ(xayav):y°



Substitution

Proposition. Let R* be the relation obtained by
substitution from total functions f4,..., f,, and an
m-place relation R.

m [f R and the f; are recursive, then R* Is
recursive.

m [f R and the f; are primitive recursive, then R*
IS primitive recursive.

Proof. See lecture.



Exercise

Let R be a (primitive) recursive two-place
relation. Show that the relations below are
(primitive) recursive:

1. the converse of R, given by S(x,y) iff R(y, x);
2. the diagonal of R, given by D(x) iff R(x, x);

3. for any natural number m, the vertical and
horizontal sections of R, given by

Ry (y) 1t B(m, y),
R™(x) iff R(x,m).
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