
Summary of primitive recursion

. – p.1/23

Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions is defined as follows:

The zero function z, the successor function
s, and all projection functions pk

i
are primitive

recursive.

Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.

. – p.2/23

Primitive recursion
If f : Nk → N and g : Nk+2 → N , then the
function h : N k+1 → N is said to be defined by
primitive recursion from f and g if

h(x̄, 0) = f(x̄)

h(x̄, s(y)) = g(x̄, y, h(x̄, y))

where x̄ stands for x1, . . . , xk. We write

h = Pr[f, g]

. – p.3/23

Abacus program for
composition

Suppose that h is defined by composition from
f, g1, g2 as follows:

h(x1, x2, x3) = f(g1(x1, x2, x3), g2(x1, x2, x3)).

The next slide contains an abacus program for h,

where x1,x2,x3 and aux are register that must

not be used by f , g1, or g2.

. – p.4/23

Abacus program for
composition

[1] -> x1; // save R1

[2] -> x2; // save R2

[3] -> x3; // save R3

Program for g1;

[1] -> aux; // save result of g1

[x1] -> 1; // restore R1

[x2] -> 2; // restore R2

[x3] -> 3; // restore R3

Program for g2;

[1] -> 2; // move result of g2 to R2

[aux] -> 1; // restore result of g1 to R1

Program for f

. – p.5/23

Abacus program for
h = Pr(f, g)

We build the result of h in a register z, while y

acts as a “countdown”. Example for y = 2:

y z

2 h(x, 0) = f(x)

1 h(x, 1) = g(x, 0, f(x))

0 h(x, 2) = g(x, 1, g(x, 0, f(x)))

We use a register i for the increasing counter.

. – p.6/23

Abacus program for
h = Pr(f, g)

On the next slide, x,y,z,i are registers that

must not be used by f or g, and y0 stands for

the initial value of Register 2.

. – p.7/23

Abacus program for
h = Pr(f, g)

[1] -> x;

[2] -> y;

Program for f;

[1]-> z;

0 -> i; // now z = h(x,i) and i+y = y0

A: if [y]=0 then { goto C } else { y-;goto B }

B: [x] -> 1;

[i] -> 2;

[z] -> 3;

Program for g;

[1] -> z;

i+; // now again z = h(x,i) and i+y = y0

goto A;

C: [z] -> 1; // return z
. – p.8/23

Limits of primitive
recursion

The Ackermann function is defined as follows:

A(0, y) = y + 1 (1)

A(x + 1, 0) = A(x, 1) (2)

A(x + 1, y + 1) = A(x,A(x + 1, y)) (3)

. – p.9/23

Computation for
A(2, 1)

A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1))

= A(1, A(0, A(1, 0))) = A(1, A(0, A(0, 1)))

= A(1, A(0, 2)) = A(1, 3) = A(0, A(1, 2))

= A(0, A(0, A(1, 1))) = A(0, A(0, A(0, A(1, 0))))

= A(0, A(0, A(0, A(0, 1)))) = A(0, A(0, A(0, 2)))

= A(0, A(0, 3)) = A(0, 4) = 5

. – p.10/23

Why A is a total
function

A(0, y) = y + 1 (1)

A(x + 1, 0) = A(x, 1) (2)

A(x + 1, y + 1) = A(x,A(x + 1, y)) (3)

Define the lexicographical order on N × N as follows:

(x, y) > (x′, y′) if x > x′ or (x = x′ and y > y′).

The clauses (2) and (3) lead to lexicographically smaller ar-

guments; this cannot go on forever, so A must finally halt.

. – p.11/23

Computing A(x, y) by
a while loop

We define a configuration to be an expression
of the form

A(x1, A(x2, . . . (A(xn−1, xn)))).

Here is an algorithm for computing A(x, y):

While there is an A(...,...) left {

Apply the suitable rule (1, 2, or 3)

to the innermost A

}

. – p.12/23

Ackermann is not
primitive recursive

If h(x, y) is defined by primitive recursion,
then y operates as a “countdown”.

By contrast, the totality of the Ackermann
function is shown with the lexicographical
ordering on pairs.

Fact: A(y, y) gets greater than any primitive
recursive function h(y) for sufficiently great y.

So in particular, A is not primitive recursive.

. – p.13/23

Towards general
recursion

As we have seen,the Ackermann function is
not primitive recursive.

Some other computable functions are not
primitive recursive simply because they are
not total.

In both cases, the algorithms can be written
in the form “WHILE some condition holds, DO
X”.

Technically, instead of WHILE loops we add a
construct called minimization which does
something equivalent.

. – p.14/23

Definition of
minimization

The minimization of a function f : N k+1 → N is
defined as follows:

Mn[f](x1, . . . , xk) =







































y if f(x1, . . . , xk, y) = 0

and for all i < y,
f(x1, . . . , xk, i)

is defined and 6= 0

⊥ otherwise

. – p.15/23

Algorithm for Mn[f]

The algorithm for Mn[f] (presented in
pseudocode) goes as follows:
y = 0;
while(not(f(x,y) = 0)) {

y = y+1;
}
return y;

This can fail to halt for two reasons: either be-

cause f(x, i) fails to halt for some i, or because

f(x, i) 6= 0 for all i.

. – p.16/23

Definition of
recursive functions

Definition. The class of recursive functions is
defined as follows:

The functions s and z are recursive, and so
are all projections pk

i
.

Functions built from recursive ones by using
composition Cn or primitive recursion Pr are
also recursive.

Functions built from recursive ones by
minimization Mn are also recursive.

. – p.17/23

Exercise
Let f be a two-argument recursive function.
Show that the following functions are also
recursive:

1. g(x, y) = f(y, x);

2. h(x) = f(x, x);

3. k17(x) = f(17, x), and k17(x) = f(x, 17).

. – p.18/23

Exercise
Give a reasonable way of assigning code num-

bers to recursive functions.

. – p.19/23

Exercise
Given a reasonable way of coding recursive func-

tions by natural numbers, let d(x) = 1 if the one-

argument function with the code number x is de-

fined and has value 0 for argument x, and d(x) = 0

otherwise. Show that this function is not recur-

sive.

. – p.20/23

Exercise
Let h(x, y) = 1 if the one-argument recursive func-

tion with code number x is defined for argument y,

and h(x, y) = 0 otherwise Show that this function

is not recursive.

. – p.21/23

Abacus program for
Mn[f]

Registers x and y must no be used by the
program for f .

[1] -> x;

0 -> y;

A: x -> 1;

y -> 2;

program for f;

if [1]=0 then {goto C} else {goto B};

B: y+; goto A;

C: [y] -> 1;

. – p.22/23

Rec. functions are
abacus-computable

Evidently, every primitive recursive function is
recursive.

We have seen earlier that all primitive
recursive functions are abacus-computable.

We have also seen that minimization is
abacus-computable.

Therefore, all recursive functions are
abacus-computable.

. – p.23/23

	
	Definition of primitive recursive functions
	Primitive recursion
	Abacus program for composition
	Abacus program for composition
	Abacus program for $h=PrimRec (f,g)$
	Abacus program for $h=PrimRec (f,g)$
	Abacus program for $h=PrimRec (f,g)$
	Limits of primitive recursion
	Computation for $Ack (2,1)$
	Why $Ack $ is a total function
	Computing $A(x,y)$
by a while loop
	Ackermann is not primitive recursive
	Towards general recursion
	Definition of minimization
	Algorithm for $Mn [f]$
	Definition of recursive functions
	Exercise
	Exercise
	Exercise
	Exercise
	Abacus program for $Mn [f]$
	Rec. functions are abacus-computable

