Summary of primitive recursion



Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions iIs defined as follows:

m The zero function z, the successor function
s, and all projection functions p¥ are primitive
recursive.

m Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.



Primitive recursion

If f: N* - N and ¢g: N**?2 — N, then the
function h : N**! — N is said to be defined by
primitive recursion from f and g If

h(jv O) — f(a_j)
h(z,s(y)) = g9(Z,y,h(Z,y))

where x stands for x4, ..., z,. We write

h = Pr(f, g



Abacus program for
composition

Suppose that h is defined by composition from
f, g1, go as follows:

h($1,33’27$3) — f(gl(ili’l,$2,$3),92(£U17$2,$3))~

The next slide contains an abacus program for A,
where x1, x2, X3 and aux are register that must

not be used by f, g1, or ¢-.



Abacus program for

(1] -> x1; // save Rl
(2] -> x2; /] save R2

(3] -> x3; // save R3

Program for gl;

(1] -> aux; // save result of gl

(x1] ->1; // restore Rl

(x2] -> 2, /] restore R2

(x3] -> 3; // restore R3

Program f or g2;

[1] -> 2; [/ nove result of g2 to R2
[aux] -> 1; // restore result of gl to Rl
Program for f

.—p.5/23



Abacus program for
h =Pr(f,g)

We build the result of /& In a register z, while y
acts as a “countdown”. Example for y = 2:

h(z,1) = g(x,0, f(x))
h(z,2) = g(x,1,9(x,0, f(z)))

We use a register ¢ for the increasing counter.

O = N
=
=
=
||
=
&




Abacus program for
h =Pr(f,g)

On the next slide, x,y, z, 1 are registers that
must not be used by f or g, and y0 stands for
the initial value of Register 2.



C

Abacus program for
h =Pr(f,g)

[1] -> Xx;

[2] ->;

Program for f;

[1]-> z;

O->1i; // nowz = h(x,i) and i+y = yO0

If [y]=0 then { goto C} else { y-;,goto B}

' x] -> 1;

1] -> 2

[ z] -> 3,

Program for g;

[1] -> z;

| +; // nowagain z = h(x,i1) and i+y = yO0
goto A

[z] -> 1, /] return z
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Limits of primitive
recursion

The Ackermann function is defined as follows:
A0,y) =y +1

Alx+1,0) = A(z, 1)
Alx+1,y+1)=A(x, Az + 1,y))
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Why A Is a total
function

A0,y) =y +1
A(x 4+ 1,0) = A(x, 1)
Alx+1,y+1) = Az, A(z + 1,y))
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Define the lexicographical order on N x N as follows:

(z,y) > (') ifx>2"or (z =2"and y > ).

The clauses (2) and (3) lead to lexicographically smaller ar-

guments; this cannot go on forever, so A must finally halt.
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Computing A(x,y) by
a while loop

We define a configuration to be an expression
of the form

A(x1, Az, ... (Alxy_1,24)))).
Here is an algorithm for computing A(x, y):

Wiile there is an A(...,... ) left {
Apply the suitable rule (1, 2, or 3)
to the I nnernost A



Ackermann iIs not
primitive recursive

mlf h(z,y) is defined by primitive recursion,
then y operates as a “countdown”.

m By contrast, the totality of the Ackermann
function is shown with the lexicographical
ordering on pairs.

m Fact: A(y,y) gets greater than any primitive
recursive function h(y) for sufficiently great y.

m SO In particular, A Is not primitive recursive.



Towards general
recursion

m As we have seen,the Ackermann function is
not primitive recursive.

m Some other computable functions are not
primitive recursive simply because they are
not total.

m |[n both cases, the algorithms can be written
In the form “WHILE some condition holds, DO
X",

m Technically, instead of WHILE loops we add a

construct called minimization which does
something equivalent.



Definition of

The minimization of a function f : N**! — N is
defined as follows:

Y |ff($1,,mk,y):()
and for all 7 < v,

f(xlw")xk?i)

n[fl(@, ) is defined and # 0

1 otherwise



Algorithm for Mn| f]

The algorithm for Mn|f] (presented in
pseudocode) goes as follows:

y = 0;

whil e(not (f(x,y) = 0)) {
y:y+1;

}

return y;

This can fall to halt for two reasons: either be-
cause f(x,:) fails to halt for some ¢, or because
f(x,1) # 0 for all 4.



Definition of
recursive functions

Definition. The class of recursive functions Is
defined as follows:

m The functions s and z are recursive, and so
are all projections p*.

m Functions built from recursive ones by using
composition Cn or primitive recursion Pr are
also recursive.

m Functions built from recursive ones by
minimization Mn are also recursive.



Exercise

Let f be a two-argument recursive function.
Show that the following functions are also
recursive:

Log(z,y) = fly,z);
2. h(x) = f(x,x);
3. kiz(z) = f(17,2), and k' (z) = f(x,17).



Exercise

Give a reasonable way of assigning code num-
bers to recursive functions.



Exercise

Given a reasonable way of coding recursive func-
tions by natural numbers, let d(z) = 1 if the one-
argument function with the code number x Is de-
fined and has value 0 for argument z, and d(xz) = 0
otherwise. Show that this function Is not recur-
sive.



Exercise

Let h(z,y) = 1if the one-argument recursive func-
tion with code number x Is defined for argument v,
and h(x,y) = 0 otherwise Show that this function
IS not recursive.



Abacus program for

Mun[f]

Registers x and y must no be used by the
program for f.

[1] -> X,

0 ->vy;
A x -> 1;

y -> 2,

program for f;

I1f [1]=0 then {goto C else {goto B};
B: y+; goto A
C [yl ->1;




Rec. functions are
abacus-computable

m Evidently, every primitive recursive function is
recursive.

= We have seen earlier that all primitive
recursive functions are abacus-computable.

m \We have also seen that minimization Is
abacus-computable.

m Therefore, all recursive functions are
abacus-computable.
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