
Recursive functions
Part 1: primitive recursion
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Recursive functions
and computability

Recursive functions are another class of
effectively-computable functions.

Unlike for Turing machines and abacus
machines, the description of recursive
functions is inductive: certain basic functions
are recursive, and functions build from
recursive functions in a certain way are also
recursive.
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Church’s thesis
Church’s thesis: “Every
effectively-computable function is recursive.”

Analogous to Turing’s thesis.
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Computability: the
big picture

Later, we show that recursive functions can
simulate TMs, and abacus machines can
simulate recursive functions.

Because TMs can simulate abacus
machines, we get a cycle of simulations.

So all three kinds of computable functions are
the same.

In particular, Church’s thesis and Turing’s
thesis are equivalent.
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Roadmap

First, we introduce the primitive recursive
functions.

Then we introduce the recursive function by
adding a construct called minimization.

Intuitively, primitive recursive functions can do
only FOR loops and always terminate,
whereas minimization corresponds to a
WHILE loop that may not terminate.
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Motivation for
primitive recursion

Consider the function exp(x, y) = xy:

x0 = 1

x1 = x

x2 = x · x

...

xy = x · x · · · · · x (y occurrences of x)

xy+1 = x · x · · · · · x (y + 1 occurrences of x)

= x · xy
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Motivation for
primitive recursion

The two “rewriting rules”

x0 = 1 (1)

xy+1 = x · xy (2)

are enough to define the exp function.
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Motivation for
primitive recursion

The rules for exp reduce exponentiation to
multiplication; now consider

x · 0 = 0 (1)

x · (y + 1) = x + x · y (2)

So the rules for · reduce multiplication to addition.
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Motivation for
primitive recursion

Now consider

x + 0 = x (1)

x + (y + 1) = 1 + (x + y) (2)

So the rules for + reduce addition to adding 1.
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Motivation for
primitive recursion

Primitive recursion is in the spirit of our
“computation by rewriting” definitions of exp, ·,
and +.

It consists of one rule for y = 0 and one rule
for y > 0.

y acts as a “countdown” for the number of
remaining steps in the computation.
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Building blocks for
prim. rec. functions

On the next slides, we introduce the building
blocks for primitive recursive functions. There will
be

three classes of basic functions: successor,
zero, and projections, and

two ways of building new primitive recursive
functions from old: composition and
primitive recursion.
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The successor
function

The function that takes x to x + 1 can be
taken apart no further.

Therefore, it will be a basic building block for
primitive recursive functions.

We denote it by s (for “successor”).
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The zero function
The zero is used in every computation and
will therefore be a basic building block for
primitive recursive functions.

For technical reasons, we shall use the zero
function

z :

{

N → N

z(x) = 0
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The projections

A projection function is of the form:

pk
i :

{

Nk → N

p(x1, x2, . . . , xk) = xi

Called so because it goes from k-dimensional
“space” into one-dimensional “space”).

Projections occur in almost every computation
and will therefore be basic building blocks for
primitive recursive functions.
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Composition

If g1, g2, . . . , gm are functions N k → N , and f is a
function Nm → N , then the function h : N k → N

given by

h(x1, . . . , xk) = f(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))

is said to arise by composition from f, g1, . . . , gk.
We write

h = Cn[f, g1, . . . , gm].
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Composition:
example

Consider

h(x1, x2, x3) = f(g(x1, x2, x3))

where f = s and g = p3
2. Thus h returns the

successor of the second argument. Formally:

h = Cn[f, g] = Cn[s, p3

2].
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Composition:
example

Constant functions. Consider

h(x) = f(g(x)) where f = s and g = z.

Thus h is the constant function that returns 1.
Formally: h = Cn[f, g] = Cn[s, z]. We have

z the constant 0 function

Cn[s, z] the constant 1 function

Cn[s, Cn[s, z]] the constant 2 function
...
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Primitive recursion
If f : Nk → N and g : Nk+2 → N , then the
function h : N k+1 → N is said to be defined by
primitive recursion from f and g if

h(x̄, 0) = f(x̄)

h(x̄, s(y)) = g(x̄, y, h(x̄, y))

where x̄ stands for x1, . . . , xk. We write

h = Pr[f, g]
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Sum

sum(x, 0) = x

sum(x, s(y)) = s(sum(x, y))

So

f(x) = x = p1

1(x)

g(x, y, u) = s(u) = Cn[s, p3

3]

Thus sum = Pr[f, g] = Pr[p1
1, Cn[s, p3

3]]
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Multiplication

Multiplication can be defined as follows:

prod = Pr[z, Cn[sum, p3

1, p
3

3]].
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Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions is defined as follows:

The zero function z, the successor function
s, and all projection functions pk

i are primitive
recursive.

Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.
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Exercise
The predecessor function pred takes one argu-

ment y and returns y− 1 if y is greater than 0, and

returns 0 otherwise. Show that pred is primitive

recursive by using (not necessarily all of) s, z, pk
i ,

Cn, and Pr.
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Exercise
Show that the factorial function is primitive recur-

sive.
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Exercise
We have seen that there are encodings of pairs of

natural numbers, i.e. that there are total injections

c : N × N → N ; show for one such encoding c

that it is primitive recursive.
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Prim. rec. =⇒
abacus-computable

Next, we will show that every primitive recursive

function is computable by an abacus machine

(and therefore also by a Turing machine).
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Abacus program for
successor

Increase R1:

0: 1+; goto 99
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Abacus program for
the zero function

Decrease the content of R1 until it contains zero:

0: if [1]=0 then
{goto 99}

else
{1-;goto 0}
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Abacus program for
the projection pk

i

If i = 1, the program needs to do nothing,
because the result is already in R1.

0: goto 99

For i 6= 1, the program makes R1 zero and
then empties Ri into R1:

0: if [1]=0 then {goto 1} else {1-;goto 0}

1: if [i]=0 then {goto 99} else {i-;goto 2}

2: 1+; goto 1
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Abacus program for
composition

Suppose that h is defined by composition from
f, g1, g2 as follows:

h(x1, x2, x3) = f(g1(x1, x2, x3), g2(x1, x2, x3)).

The next slide contains an abacus program for h,

where x1,x2,x3 and aux are register that must

not be used by f , g1, or g2.
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Abacus program for
composition

[1] -> x1; // save R1

[2] -> x2; // save R2

[3] -> x3; // save R3

Program for g1;

[1] -> aux; // save result of g1

[x1] -> 1; // restore R1

[x2] -> 2; // restore R2

[x3] -> 3; // restore R3

Program for g2;

[1] -> 2; // move result of g2 to R2

[aux] -> 1; // restore result of g1 to R1

Program for f
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Abacus program for
h = Pr(f, g)

We build the result of h in a register z, while y

acts as a “countdown”. Example for y = 2:

y z

2 h(x, 0) = f(x)

1 h(x, 1) = g(x, 0, f(x))

0 h(x, 2) = g(x, 1, g(x, 0, f(x)))

We use a register i for the increasing counter. On

the next slide, x,y,z,i are registers that must

not be used by f and g.
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Abacus program for
h = Pr(f, g)

[1] -> x;

[2] -> y;

Program for f;

[1]-> z;

0 -> i; // now z = h(x,i) and i+y = y0

if [y]=0 then { goto X } else y-;goto Y

Y: [x] -> 1;

[i] -> 2;

[z] -> 3;

Program for g;

[1] -> z;

i+; // now again z = h(x,i) and i+y = y0

goto Y;

X: [z] -> 1; // return z
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