
Recursive functions
Part 1: primitive recursion

. – p.1/32

Recursive functions
and computability

Recursive functions are another class of
effectively-computable functions.

Unlike for Turing machines and abacus
machines, the description of recursive
functions is inductive: certain basic functions
are recursive, and functions build from
recursive functions in a certain way are also
recursive.

. – p.2/32

Church’s thesis
Church’s thesis: “Every
effectively-computable function is recursive.”

Analogous to Turing’s thesis.

. – p.3/32

Computability: the
big picture

Later, we show that recursive functions can
simulate TMs, and abacus machines can
simulate recursive functions.

Because TMs can simulate abacus
machines, we get a cycle of simulations.

So all three kinds of computable functions are
the same.

In particular, Church’s thesis and Turing’s
thesis are equivalent.

. – p.4/32

Roadmap

First, we introduce the primitive recursive
functions.

Then we introduce the recursive function by
adding a construct called minimization.

Intuitively, primitive recursive functions can do
only FOR loops and always terminate,
whereas minimization corresponds to a
WHILE loop that may not terminate.

. – p.5/32

Motivation for
primitive recursion

Consider the function exp(x, y) = xy:

x0 = 1

x1 = x

x2 = x · x

...

xy = x · x · · · · · x (y occurrences of x)

xy+1 = x · x · · · · · x (y + 1 occurrences of x)

= x · xy

. – p.6/32

Motivation for
primitive recursion

The two “rewriting rules”

x0 = 1 (1)

xy+1 = x · xy (2)

are enough to define the exp function.

. – p.7/32

Motivation for
primitive recursion

The rules for exp reduce exponentiation to
multiplication; now consider

x · 0 = 0 (1)

x · (y + 1) = x + x · y (2)

So the rules for · reduce multiplication to addition.

. – p.8/32

Motivation for
primitive recursion

Now consider

x + 0 = x (1)

x + (y + 1) = 1 + (x + y) (2)

So the rules for + reduce addition to adding 1.

. – p.9/32

Motivation for
primitive recursion

Primitive recursion is in the spirit of our
“computation by rewriting” definitions of exp, ·,
and +.

It consists of one rule for y = 0 and one rule
for y > 0.

y acts as a “countdown” for the number of
remaining steps in the computation.

. – p.10/32

Building blocks for
prim. rec. functions

On the next slides, we introduce the building
blocks for primitive recursive functions. There will
be

three classes of basic functions: successor,
zero, and projections, and

two ways of building new primitive recursive
functions from old: composition and
primitive recursion.

. – p.11/32

The successor
function

The function that takes x to x + 1 can be
taken apart no further.

Therefore, it will be a basic building block for
primitive recursive functions.

We denote it by s (for “successor”).

. – p.12/32

The zero function
The zero is used in every computation and
will therefore be a basic building block for
primitive recursive functions.

For technical reasons, we shall use the zero
function

z :

{

N → N

z(x) = 0

. – p.13/32

The projections

A projection function is of the form:

pk
i :

{

Nk → N

p(x1, x2, . . . , xk) = xi

Called so because it goes from k-dimensional
“space” into one-dimensional “space”).

Projections occur in almost every computation
and will therefore be basic building blocks for
primitive recursive functions.

. – p.14/32

Composition

If g1, g2, . . . , gm are functions N k → N , and f is a
function Nm → N , then the function h : N k → N

given by

h(x1, . . . , xk) = f(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))

is said to arise by composition from f, g1, . . . , gk.
We write

h = Cn[f, g1, . . . , gm].

. – p.15/32

Composition:
example

Consider

h(x1, x2, x3) = f(g(x1, x2, x3))

where f = s and g = p3
2. Thus h returns the

successor of the second argument. Formally:

h = Cn[f, g] = Cn[s, p3

2].

. – p.16/32

Composition:
example

Constant functions. Consider

h(x) = f(g(x)) where f = s and g = z.

Thus h is the constant function that returns 1.
Formally: h = Cn[f, g] = Cn[s, z]. We have

z the constant 0 function

Cn[s, z] the constant 1 function

Cn[s, Cn[s, z]] the constant 2 function
...

. – p.17/32

Primitive recursion
If f : Nk → N and g : Nk+2 → N , then the
function h : N k+1 → N is said to be defined by
primitive recursion from f and g if

h(x̄, 0) = f(x̄)

h(x̄, s(y)) = g(x̄, y, h(x̄, y))

where x̄ stands for x1, . . . , xk. We write

h = Pr[f, g]

. – p.18/32

Sum

sum(x, 0) = x

sum(x, s(y)) = s(sum(x, y))

So

f(x) = x = p1

1(x)

g(x, y, u) = s(u) = Cn[s, p3

3]

Thus sum = Pr[f, g] = Pr[p1
1, Cn[s, p3

3]]

. – p.19/32

Multiplication

Multiplication can be defined as follows:

prod = Pr[z, Cn[sum, p3

1, p
3

3]].

. – p.20/32

Definition of primitive
recursive functions

Definition. The class of primitive recursive
functions is defined as follows:

The zero function z, the successor function
s, and all projection functions pk

i are primitive
recursive.

Functions which arise by composition Cn or
primitive recursion Pr from primitive
recursive functions are also primitive
recursive.

. – p.21/32

Exercise
The predecessor function pred takes one argu-

ment y and returns y− 1 if y is greater than 0, and

returns 0 otherwise. Show that pred is primitive

recursive by using (not necessarily all of) s, z, pk
i ,

Cn, and Pr.

. – p.22/32

Exercise
Show that the factorial function is primitive recur-

sive.

. – p.23/32

Exercise
We have seen that there are encodings of pairs of

natural numbers, i.e. that there are total injections

c : N × N → N ; show for one such encoding c

that it is primitive recursive.

. – p.24/32

Prim. rec. =⇒
abacus-computable

Next, we will show that every primitive recursive

function is computable by an abacus machine

(and therefore also by a Turing machine).

. – p.25/32

Abacus program for
successor

Increase R1:

0: 1+; goto 99

. – p.26/32

Abacus program for
the zero function

Decrease the content of R1 until it contains zero:

0: if [1]=0 then
{goto 99}

else
{1-;goto 0}

. – p.27/32

Abacus program for
the projection pk

i

If i = 1, the program needs to do nothing,
because the result is already in R1.

0: goto 99

For i 6= 1, the program makes R1 zero and
then empties Ri into R1:

0: if [1]=0 then {goto 1} else {1-;goto 0}

1: if [i]=0 then {goto 99} else {i-;goto 2}

2: 1+; goto 1

. – p.28/32

Abacus program for
composition

Suppose that h is defined by composition from
f, g1, g2 as follows:

h(x1, x2, x3) = f(g1(x1, x2, x3), g2(x1, x2, x3)).

The next slide contains an abacus program for h,

where x1,x2,x3 and aux are register that must

not be used by f , g1, or g2.

. – p.29/32

Abacus program for
composition

[1] -> x1; // save R1

[2] -> x2; // save R2

[3] -> x3; // save R3

Program for g1;

[1] -> aux; // save result of g1

[x1] -> 1; // restore R1

[x2] -> 2; // restore R2

[x3] -> 3; // restore R3

Program for g2;

[1] -> 2; // move result of g2 to R2

[aux] -> 1; // restore result of g1 to R1

Program for f

. – p.30/32

Abacus program for
h = Pr(f, g)

We build the result of h in a register z, while y

acts as a “countdown”. Example for y = 2:

y z

2 h(x, 0) = f(x)

1 h(x, 1) = g(x, 0, f(x))

0 h(x, 2) = g(x, 1, g(x, 0, f(x)))

We use a register i for the increasing counter. On

the next slide, x,y,z,i are registers that must

not be used by f and g.
. – p.31/32

Abacus program for
h = Pr(f, g)

[1] -> x;

[2] -> y;

Program for f;

[1]-> z;

0 -> i; // now z = h(x,i) and i+y = y0

if [y]=0 then { goto X } else y-;goto Y

Y: [x] -> 1;

[i] -> 2;

[z] -> 3;

Program for g;

[1] -> z;

i+; // now again z = h(x,i) and i+y = y0

goto Y;

X: [z] -> 1; // return z
. – p.32/32

	
	Recursive functions and computability
	Church's thesis
	Computability: the big picture
	Roadmap
	Motivation for primitive recursion
	Motivation for primitive recursion
	Motivation for primitive recursion
	Motivation for primitive recursion
	Motivation for primitive recursion
	Building blocks for prim. rec. functions
	The successor function
	The zero function
	The projections
	Composition
	Composition: example
	Composition: example
	Primitive recursion
	Sum
	Multiplication
	Definition of primitive recursive functions
	Exercise
	Exercise
	Exercise
	Prim. rec. $implies $ abacus-computable
	Abacus program for successor
	Abacus program for the zero function
	Abacus program for the projection p^k_i
	Abacus program for composition
	Abacus program for composition
	Abacus program for $h=PrimRec (f,g)$
	Abacus program for $h=PrimRec (f,g)$

