
Abacus machines

. – p.1/36

Abacus machines:
overview

The notion of Turing-computability was
developed before the age of high-speed
digital computers.

In contrast to Turing machines, computers
today have random-access storage.

An abacus machine is an idealized version
of such modern computers.

. – p.2/36

Abacus machines:
overview

We shall prove that a function N k → N is
abacus-computable if and only if it is
Turing-computable.

Abacus machines are easier to program than
Turing machines; we shall take advantage of
this fact and show the computability of e.g.
multiplication.

. – p.3/36

Abacus machine:
description

An abacus machine has an enumerably
infinite number of registers R1, R2, R3, . . .

Each register can contain a non-negative
integer.

. – p.4/36

Programs for an
abacus machine

An abacus program is a finite list of commands:
1: command1

2: command2

3: command3

...
n: commandn

There are only two kinds of commands:

i+; goto l

if i=0 then { goto l1 } else { i-; goto l2 }

. – p.5/36

Meaning of the
commands

The command
i+; goto l

means: add 1 to register Ri and then go to
line l.

The command
if i=0 then { goto l1 } else { i-; goto l2}
means: if Ri contains 0, then goto line l1;
otherwise, subtract 1 from Ri and then go to
line l2.

. – p.6/36

Abacus machines vs.
real-life computers

Real-life computers have only finitely many
storage cells (e.g. RAM + hard disk).

Not a real issue, because each abacus
program uses only finitely many registers.

More serious: the storage cells of real-life
computers have limited size.

But infinite registers make sense, because in
a theoretical setting, there is no point in
restricting register size arbitrarily (e.g. 16bit,
32bit, or 64bit).

. – p.7/36

Abacus programs as
flow graphs

n
+
 n-

 0

Add 1 to Rn.

If Rn is 0, come out on the arrow
marked “0”, otherwise, subtract
1 from Rn and come out on the
other arrow.

. – p.8/36

Example: making Rn
zero

0: if n = 0 then { goto 99 } else { n-; goto 0 }
We consider a goto to a missing line (e.g. line 99
in the program above) to be a halting command.

Flow graph:

n-

 0

. – p.9/36

Exercise
Define a reasonable way of coding abacus ma-

chines by natural numbers.

. – p.10/36

Addition
The program below puts m + n into register n

and makes m zero.

0: if m=0 then {goto 99} else {m-; goto 1}

1: n+; goto 0

(We assume that m 6= n.)

. – p.11/36

Addition: block
diagram

[
m
] + [
n
] ->
 n

0 ->
 m

Block diagram that sum-
marizes the effect

. – p.12/36

Addition without
destroyed argument

The program below puts m + n in n without
destroying m.

0: if m=0 then {goto 3} else {m-; goto 1}

1: n+; goto 2

2: p+; goto 0

3: if p=0 then {goto 99} else {p-;goto 4}

4: m+; goto 3

if Register p differs from n and m and is initially

zero.

. – p.13/36

Addition without
destroyed argument

[
m
] + [
n
] ->
 n

if [p]=0 initially

Block diagram

. – p.14/36

Multiplication

The program below adds m1 ∗ m2 to n and
empties m1.

0: if m1=0 then {goto 99} else {m1-; goto 1}

1: [m2] + [n] -> n; goto 0

The “command” in line 1 is really a macro–that is,

an abbreviation for an actual program (here: for

the addition program seen previously).

. – p.15/36

Multiplication

Full flow graph:

0
m
2
-

n
+

p+

p-

m
2
+

0

m
1
-

0

. – p.16/36

Multiplication

[
m
1
] * [
m
2
] ->
 n

0 ->
 m
1

if [
n
] = [p] = 0 initially

Block diagram

. – p.17/36

Exercise
Define an abacus machine that copies Register m

into Register n, without destroying m. (Note that

the initial value of n might differ from 0.)

. – p.18/36

Exercise
Given different registers x and y, define an
abacus machine that puts x−̇y into x, where
−̇ is defined by

x−̇y =

{

x − y if y < x

0 otherwise.

Given mutually different registers x, y and z,
define an abacus machine that puts x−̇y into
z.

. – p.19/36

Exercise
The signum function is defined by letting

sg(x) = 1 if x > 0

sg(x) = 0 otherwise.

Define an abacus machine that puts sg(x) into

Register x.

. – p.20/36

Exercise
Let f be the function

f(x, y) =

{

1 if x < y

0 otherwise.

Given different registers x, y, and z, define an

abacus machine that puts f(x, y) into z.

. – p.21/36

Exercise
The quotient and the remainder when the pos-

itive integer x is divided by the positive integer y

are the unique natural numbers q and r such that

x = qy + r and 0 ≤ r < y. Let the functions quo

and rem be defined as follows: rem(x, y) = the

remainder of dividing x by y if y 6= 0, and = x if

y = 0; quo(x, y) = the quotient of dividing x by y if

y 6= 0 and = 0 if y = 0. Design abacus machines

for rem and quo. (Hint: tackle rem first.)
. – p.22/36

Abacus-computable
functions

Definition. A function f : N k → N is called
abacus-computable if there is an abacus
machine M such that:

If f(x1, x2, . . . , xk) = y, then M , starting with
storage R1 = x1, R2 = x2, . . . , Rk = xk and
Ri = 0 for i > k, halts with R1 = y.

If f(x1, x2, . . . , xk) is undefined, then M ,
starting with the same storage as above,
never halts.

. – p.23/36

From abacus to
Turing machine

Theorem. Every abacus-computable function is
Turing-computable.

Proof: for every abacus machine that computes a function

f : Nk → N , we build a TM that also computes f . (The

construction will take several slides.)

. – p.24/36

Minor change to TM’s

Because we changed N to include 0, we modify
the notion of Turing computability accordingly:

From now on, a block . . . 00100 . . . containing
a single stroke on the tape of a TM represents
no longer the number 1, but the number 0.

More generally, a block of n strokes on the
tape represents no longer n, but n − 1.

For example, the tape 11101101111 is now the
standard initial configuration for the
arguments (2, 1, 3).

. – p.25/36

Three simulation
stages

The TM will proceed in three stages:

Initialization

Simulation

Cleanup

. – p.26/36

Initialization
Suppose the abacus machine uses the
registers R1, R2, . . . , Rn.

Then the initialization process extends the
tape by blocks of single strokes, so that there
is one block of strokes for every used register.

For example, if the TM’s initial tape is
11101101111 and the abacus uses registers
R1, R3, . . . , R6, then the tape will become
11101101111010101.

. – p.27/36

Simulation
In this stage, the Turing machine simulates
the commands of the abacus program step by
step.

The tape continues to have one block of
strokes for every used register.

. – p.28/36

Cleanup

If the abacus machine halts, the simulating
TM will reach a configuration whose tape
describes the final content of the abacus
machine’s registers.

During the cleanup stage, the TM deletes all
blocks of strokes except for the first (which
corresponds to the result according to the
definition of abacus computability).

. – p.29/36

Initialization
The case for 3 arguments and 6 used registers:

1

0:R

 1:R

2

0:R

 1:R

3

 1:R

4
 4'

1:R
 0:R

 0:1

5
 5'

1:R
 0:R

 0:1

6

 0:1
 return to

the

standard

position

move to the 0 on the right

of the third block of 1s

write three single-stroke blocks
 0:R

0:R

. – p.30/36

Simulation of n+

 0:1 (add 1 to n-th block)

move to the 0 on the right

of the n-th block of 1s

move each block on the

right of the n-th block one

position to the right

return to the

standard position

 0:R

0:L

n
+
 turns into

. – p.31/36

Simulation of n+

is there

another

block on

the right?

 1:R

1:0 (yes)

delete its first 1

find the

rightmost 1

in the

block

 0:R

0:1 (add another 1

on the right)

 0:L (no)

1:R

move each block on the

right of the n-th block one

position to the right

. – p.32/36

Simulation of n−

go to the first 1

on the n-th block

 1:R

is [n]

= 0?

 0:L (yes)

return to the

standard position

 0:R

1:R (no)

0:L
return to the

standard position

0:R

remove one stroke from the n-th

block and move each block on

the right one position to the left

n
-

 0

turns into

. – p.33/36

Simulation of n−

find

rightmost

1 of block

 1:R

 0:L

delete

rightmost

1

 1:0

0:R

another

block on

the right?

 0:L (no)

1:L (yes)

add 1 on

the left of

block

 0:1

1:R

0:R

remove one stroke from the n-th block and move

each block on the right one position to the left

. – p.34/36

Cleanup

return to the standard

position

move to the 0 on the right

of the n-th block of 1s

delete block n

delete block 2

delete block n-1

 0:L

 0:L

 0:L

 0:L

 0:L

...

. – p.35/36

How to put all parts
together

To finish building the simulating TM, we must put
all parts together.

Connect the “loose end” of the initialization
flow-graph with the start of the simulation
flow-graph.

Connect all loose ends of the simulation
flow-graph with the start of the cleanup
flow-graph.

The resulting flow-graph describes the Turing
machine that simulates the abacus machine.

. – p.36/36

	
	Abacus machines: overview
	Abacus machines: overview
	Abacus machine: description
	Programs for an abacus machine
	Meaning of the commands
	Abacus machines vs. real-life computers
	Abacus programs as flow graphs
	Example: making R_n zero
	Exercise
	Addition
	Addition: block diagram
	Addition without destroyed argument
	Addition without destroyed argument
	Multiplication
	Multiplication
	Multiplication
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Abacus-computable functions
	From abacus to Turing machine
	Minor change to TM's
	Three simulation stages
	Initialization
	Simulation
	Cleanup
	Initialization
	Simulation of $n+$
	Simulation of $n+$
	Simulation of $n-$
	Simulation of $n-$
	Cleanup
	How to put all parts together

