Abacus machines

Abacus machines: overview

- The notion of Turing-computability was developed before the age of high-speed digital computers.
- In contrast to Turing machines, computers today have random-access storage.
- An abacus machine is an idealized version of such modern computers.

Abacus machines: overview

- We shall prove that a function $N^k \rightarrow N$ is abacus-computable if and only if it is Turing-computable.
- Abacus machines are easier to program than Turing machines; we shall take advantage of this fact and show the computability of e.g. multiplication.

Abacus machine: description

- An abacus machine has an enumerably infinite number of **registers** R_1, R_2, R_3, \ldots
- Each register can contain a non-negative integer.

Programs for an abacus machine

An abacus program is a finite list of commands:

- **1**: $command_1$
- **2**: $command_2$
- **3**: $command_3$
- **n**: $command_n$

There are only two kinds of commands:

∎*i*+; goto *l*

• if i=0 then { goto l_1 } else { i-; goto l_2 }

Meaning of the commands

The command

i+; goto *l*

means: add 1 to register R_i and then go to line l.

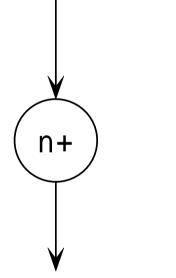
The command

if i=0 then { goto l_1 } else { i-; goto l_2 } means: if R_i contains 0, then goto line l_1 ; otherwise, subtract 1 from R_i and then go to line l_2 .

Abacus machines vs. real-life computers

- Real-life computers have only finitely many storage cells (e.g. RAM + hard disk).
- Not a real issue, because each abacus program uses only finitely many registers.
- More serious: the storage cells of real-life computers have limited size.
- But infinite registers make sense, because in a theoretical setting, there is no point in restricting register size arbitrarily (e.g. 16bit, 32bit, or 64bit).

Abacus programs as flow graphs



n-0

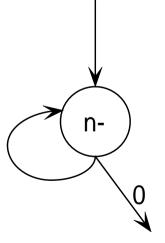
Add 1 to R_n .

If R_n is 0, come out on the arrow marked "0", otherwise, subtract 1 from R_n and come out on the other arrow.

Example: making R_n **zero**

0: if n = 0 then { goto 99 } else { n-; goto 0 } We consider a goto to a missing line (e.g. line 99 in the program above) to be a halting command.

Flow graph:



Define a reasonable way of coding abacus machines by natural numbers.

Addition

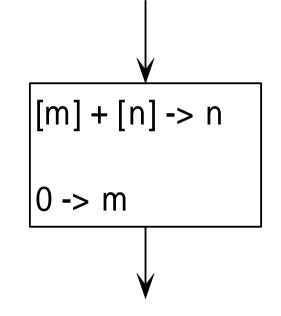
The program below puts m + n into register n and makes m zero.

0: if m=0 then {goto 99} else {m-; goto 1}

1: n+; goto 0

(We assume that $m \neq n$.)

Addition: block diagram



Block diagram that summarizes the effect

Addition without destroyed argument

The program below puts m + n in n without destroying m.

- 0: if m=0 then {goto 3} else {m-; goto 1}
- 1: n+; goto 2
- 2: p+; goto 0
- 3: if p=0 then {goto 99} else {p-;goto 4}
- 4: m+; goto 3

if Register p differs from n and m and is initially zero.

Addition without destroyed argument

[m] + [n] -> n

if [p]=0 initially

Block diagram

Multiplication

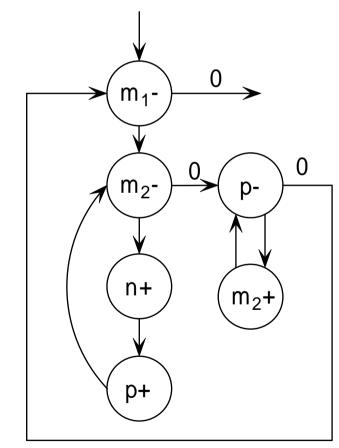
The program below adds $m_1 * m_2$ to n and empties m_1 .

- 0: if m1=0 then {goto 99} else {m1-; goto 1}
- 1: [m2] + [n] -> n; goto 0

The "command" in line 1 is really a **macro**—that is, an abbreviation for an actual program (here: for the addition program seen previously).

Multiplication

Full flow graph:



Multiplication

[m₁] * [m₂] -> n

0 -> m₁

|if[n] = [p] = 0 initially

Block diagram

Define an abacus machine that copies Register m into Register n, without destroying m. (Note that the initial value of n might differ from 0.)

Given different registers x and y, define an abacus machine that puts x-y into x, where - is defined by

$$\dot{x-y} = \begin{cases} x-y & \text{if } y < x \\ 0 & \text{otherwise.} \end{cases}$$

Given mutually different registers x, y and z, define an abacus machine that puts $\dot{x-y}$ into z.

The signum function is defined by letting

sg(x) = 1 if x > 0sg(x) = 0 otherwise.

Define an abacus machine that puts sg(x) into Register x.

Let f be the function

$$f(x,y) = \begin{cases} 1 & \text{if } x < y \\ 0 & \text{otherwise.} \end{cases}$$

Given different registers x, y, and z, define an abacus machine that puts f(x, y) into z.

The **quotient** and the **remainder** when the positive integer x is divided by the positive integer y are the unique natural numbers q and r such that x = qy + r and $0 \le r < y$. Let the functions quo and rem be defined as follows: rem(x,y) = theremainder of dividing x by y if $y \neq 0$, and = x if y = 0; quo(x, y) = the quotient of dividing x by y if $y \neq 0$ and = 0 if y = 0. Design abacus machines for *rem* and *quo*. (Hint: tackle *rem* first.)

Abacus-computable functions

Definition. A function $f: N^k \rightarrow N$ is called **abacus-computable** if there is an abacus machine M such that:

- If $f(x_1, x_2, ..., x_k) = y$, then M, starting with storage $R_1 = x_1, R_2 = x_2, ..., R_k = x_k$ and $R_i = 0$ for i > k, halts with $R_1 = y$.
- If $f(x_1, x_2, \ldots, x_k)$ is undefined, then M, starting with the same storage as above, never halts.

From abacus to Turing machine

Theorem. Every abacus-computable function is Turing-computable.

Proof: for every abacus machine that computes a function $f: N^k \rightarrow N$, we build a TM that also computes f. (The construction will take several slides.)

Minor change to TM's

Because we changed N to include 0, we modify the notion of Turing computability accordingly:

- From now on, a block ... 00100 ... containing a single stroke on the tape of a TM represents no longer the number 1, but the number 0.
- More generally, a block of n strokes on the tape represents no longer n, but n 1.
- For example, the tape 11101101111 is now the standard initial configuration for the arguments (2, 1, 3).

Three simulation stages

The TM will proceed in three stages:

- Initialization
- Simulation
- Cleanup

Initialization

- Suppose the abacus machine uses the registers R_1, R_2, \ldots, R_n .
- Then the initialization process extends the tape by blocks of single strokes, so that there is one block of strokes for every used register.
- For example, if the TM's initial tape is 111011011111 and the abacus uses registers R_1, R_3, \ldots, R_6 , then the tape will become 11101101111010101.

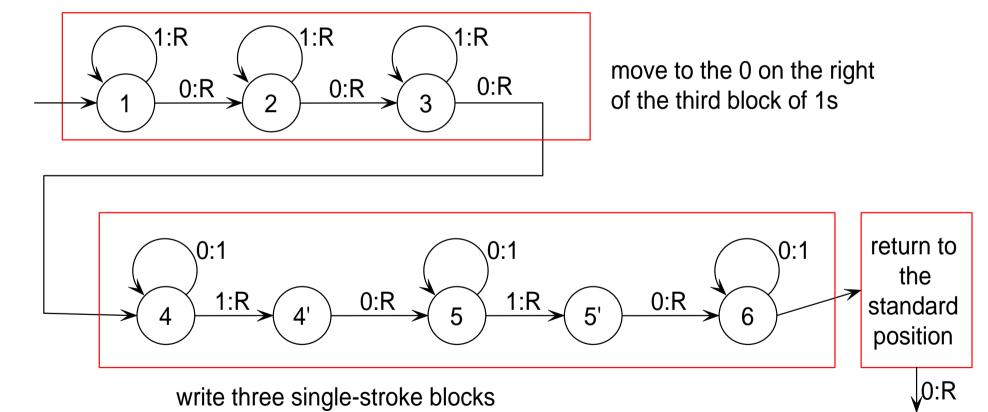
Simulation

- In this stage, the Turing machine simulates the commands of the abacus program step by step.
- The tape continues to have one block of strokes for every used register.

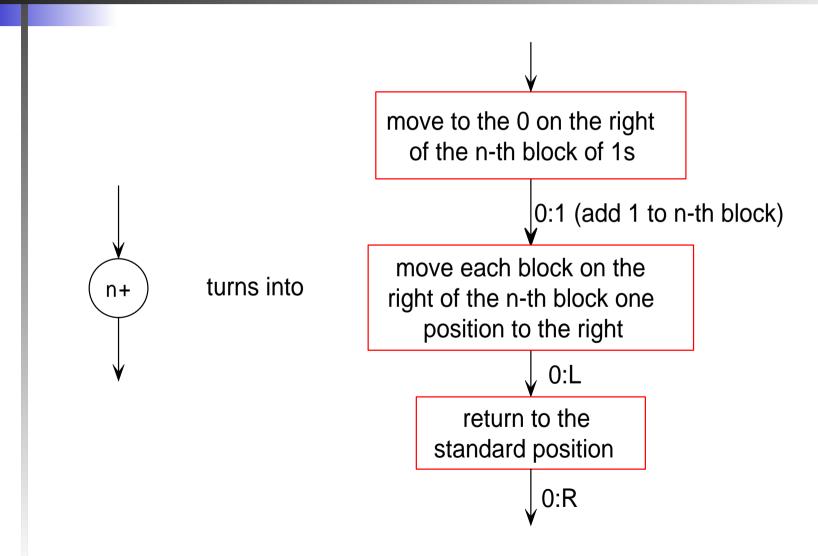
- If the abacus machine halts, the simulating TM will reach a configuration whose tape describes the final content of the abacus machine's registers.
- During the cleanup stage, the TM deletes all blocks of strokes except for the first (which corresponds to the result according to the definition of abacus computability).

Initialization

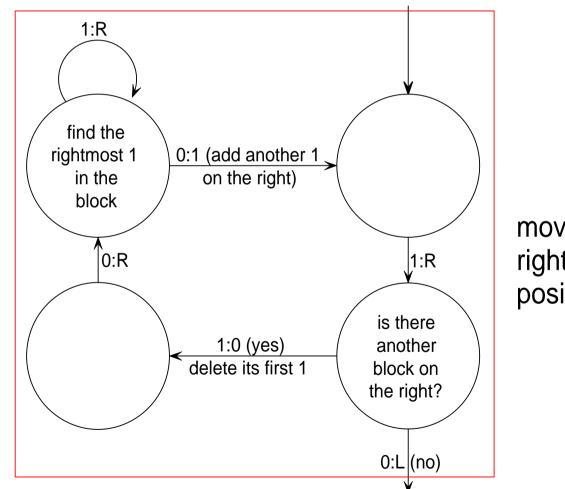
The case for 3 arguments and 6 used registers:



Simulation of *n*+

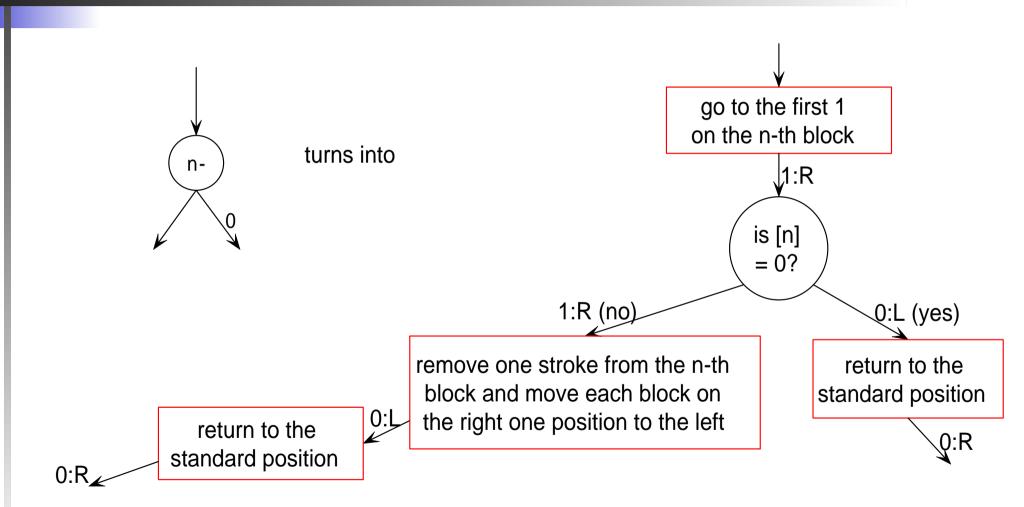


Simulation of *n*+

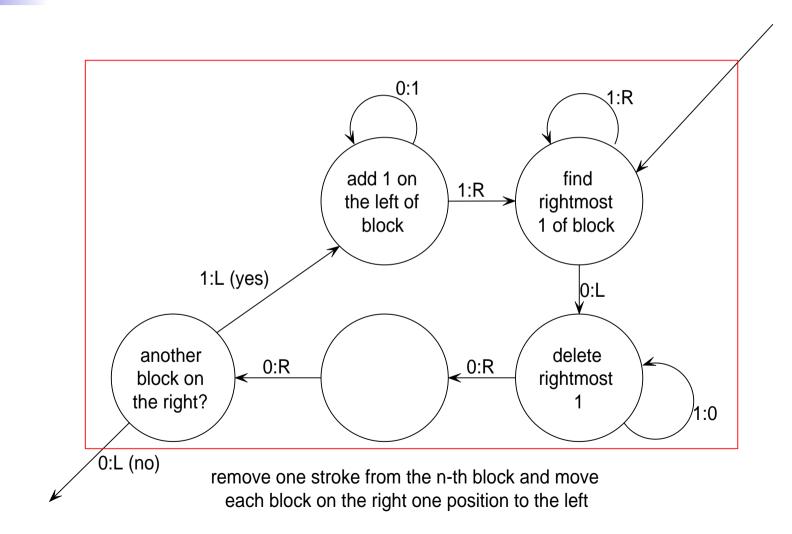


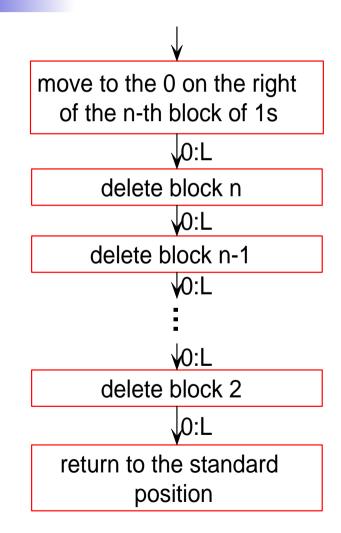
move each block on the right of the n-th block one position to the right

Simulation of *n*-



Simulation of *n*-





How to put all parts together

To finish building the simulating TM, we must put all parts together.

- Connect the "loose end" of the initialization flow-graph with the start of the simulation flow-graph.
- Connect all loose ends of the simulation flow-graph with the start of the cleanup flow-graph.
- The resulting flow-graph describes the Turing machine that simulates the abacus machine.