
Limits of computability

. – p.1/32

Does this program
exist?

Is it possible to write a Java method of the form
public boolean test(String program,String input) {

// some code here

}

such that test returns

true if the string program is the code of a
Java method that prints “Hello world!” when
called with input, and

false otherwise?

. – p.2/32

Does this program
exist?

For example, if the string program is

public void abc(String s) { if(s == "abc") { print
"Hello world!"; } else { print "Whatever"; } }

then

test called with program and input “abc”
yields true;

test called with program and any other
input yields false.

. – p.3/32

A helper function

To see if test exists, we shall consider a funny
program on the next slide. First, we need a
helper function: let

enumerate
be an enumeration for the set

{(x, y, z, n) : x, y, z, n are positive integers and n ≥ 3}.

This can could be written in Java as a method

int[] enumerate(int i) { ... }

(Remember Cantor’s Zig-Zag!)
. – p.4/32

maybeHelloWorld
String maybeHelloWorld(String s) {

int x, y, z, n, i;

i = 1;

while(true) {

(x,y,z,n) = enumerate(i);

if(exp(x,n) + exp(y,n) == exp(z,n)) {

print("Hello world!");

break;

}

i = i + 1;

}

}
. – p.5/32

maybeHelloWorld

The program maybeHelloWorld does the
following:

If there are positive integers x, y, z, n such
that n ≥ 3 and

xn + yn = zn,

the it prints “Hello World!”.

Otherwise, it goes into an infinite loop.

What happens if we call test on
maybeHelloWorld (and any input)?

. – p.6/32

test2
public void test2(String program) {

if(test(program,program)==false) {

print("Hello world!");

} else {

print("Whatever");

}

}

What happens if we call test2 with its own code

as argument?

. – p.7/32

Turing machines

. – p.8/32

Motivation
Real-life programming languages are too big
and messy to make precise claims about
computability.

To address this issue, we shall use idealized
notions of computation.

The first such notion we shall study is that of
Turing machine.

Introduced by Alan Turing in the 1930’s before
programming languages even existed.

. – p.9/32

Computable
functions

A function is defined to be

effectively computable if there is a finite list
of instructions by following which one could in
principle compute its value for any given
argument.

Turing computable if it is computable by a
Turing machine.

. – p.10/32

Turing’s thesis

It will be obvious that “Turing-computable”
implies “effectively computable”.

The converse is called “Turing’s thesis”.

Turing’s thesis cannot be proved, but we shall
accumulate evidence during this course.

. – p.11/32

Turing machine

...
 ...

movable "tape head" (can read and write)

infinite tape consisting of "squares"

. – p.12/32

Configurations of a
Turing Machine

At any time, the tape head is in one of a finite
number of states, and it is scanning one
particular square.

Each tape square is blank (written as 0) or
contains a stroke (written as 1).

We require that at any given time there are
only finitely many 1’s.

. – p.13/32

Representation of
configurations

Tapes are represented by binary strings, e.g.
1101101.

There are supposed to be infinitely many 0’s
on the left and right.

Configurations are represented e.g. like
11q01101. The state (here: q) is written as a
subscript on the scanned symbol.

. – p.14/32

Actions of the tape
head

W0: write 0 into current square

W1: write 1 into current square

L: move one square to the left

R: move one square to the right

. – p.15/32

Formal definition of a
Turing machine

Definition. A Turing machine (TM) is given by:

A set Q of states.

A tape alphabet Σ (we shall use Σ = {0, 1}).

A transition function
δ : Q × Σ ⇀ Q × {W0,W1, L,R}. The value of
δ(q, a), if defined, is a pair (q′, X) consisting of
a next state q′ and an action X.

An initial state q0.

Note the similarity with DFA. . – p.16/32

How a TM operates

Let q be the state of the head, and a the scanned
symbol (i.e. the symbol underneath). Then

If δ(q, a) is undefined, the machine halts.

Otherwise, let (q′, X) be δ(q, a). The head
executes action X and goes to state q′.

If X is W0, the head writes 0.

If X is W1, the head writes 1.

If X is L, the head moves left

If X is R, the head moves right.

. – p.17/32

Transition table
A Turing machine can be presented as a
transition table, for example:

0 1

q0 W1q0 Lq1

q1 W1q1 Lq2

q2 W1q2

. – p.18/32

Example: doubling
the number of 1s

12

10
9
8
7
6

11

5
3
 4
2
1

1:
L
 1:
L
 1:R
 0:R
 0:
L
 0:
L
 1:
L
 0:
L

0:
L

0:R

0:
L

1:
L

0:R

0:1
 0:1
 1:R
 1:R
 1:0
 1:
L
 1:
L

 1:
L

. – p.19/32

Some functions
computable by TM’s

The machine for doubling strokes can be
seen as an implementation of the function
that sends the positive integer x to 2 ∗ x.

There is also trivial machine for addition: it
needs to do nothing, because the number of
strokes after the computation is deemed to be
the result.

There is also a Turing machine for
multiplication y ∗ x (see
Boolos/Burgess/Jeffrey, somewhat messy).

. – p.20/32

Functions
computable by TM’s

We shall gather strong evidence that every
effectively computable function is computable
by a TM (i.e. that Turing’s Thesis holds).

We shall focus on functions that take k natural
numbers to a natural number, for some k ≥ 1:

f : Nk
- N.

To state what it means for such an f to be
Turing-computable, we need some definitions.

. – p.21/32

Representing natural
numbers

The argument given to the machine is only a
representation of a number: string of digits.

Decimal system, e.g. 1969.

Binary system: e.g. 11110110001.

Roman numerals: e.g. MCMLXIX.

Monadic or tally notation: e.g. the number
five is represented by five strokes: 11111.

The representation turns out to be
inessential; for Turing machines, we choose
monadic notation.

. – p.22/32

Standard initial
configurations

Definition. A standard initial configuration for
arguments x1, . . . , xk is a configuration such that

there are k blocks of strokes, separated by
single blanks;

the i-th block consists of xi strokes;

the head is in the start state (state 1) and
scans the leftmost stroke. (E.g. 1q0

1101111011
is the standard initial configuration for
arguments 3, 4, 2.)

. – p.23/32

Halting
configurations

Definition. A halting configuration is a config-

uration that allows no further transition (i.e. if q

is the current state and a is the scanned symbol,

then δ(q, a) is undefined).

. – p.24/32

Standard final
configurations

Definition. A standard final configuration for

result y is a configuration that consists of one

block of y strokes, such that the head scans the

leftmost stroke and is in a halting configuration.

. – p.25/32

Definition of Turing
computability

Definition. A function f : N k → N is computed
by a Turing machine M if

whenever f(x1, . . . , xk) = y, then M takes the
standard initial configuration for x1, . . . , xk to a
standard final configuration with y strokes on
the tape;

whenever f(y1, . . . , xk) is undefined, M never
halts, or halts with a non-standard final conf.

A function f : N k
- N is called Turing-

computable if there is a Turing machine that

computes it.
. – p.26/32

Exercise
Design a TM that will do the following. Given

a tape containing a block of 1’s and otherwise

blank, if the machine is started the leftmost 1 on

the tape, it will eventually halt scanning the right-

most stroke on the tape, having neither printed

nor erased anything.

. – p.27/32

Exercise
Design a TM that will do the following. Given a

tape containing a block of 1’s, followed by a 0,

followed by another block of 1’s, and otherwise

blank, if the machine is started the leftmost 1 on

the tape, it will eventually halt scanning the right-

most stroke on the tape, having neither printed

nor erased anything.

. – p.28/32

Exercise
Design a TM that, started scanning the leftmost 1

of an unbroken block of 1’s on an otherwise blank

tape, adds another 1 to the block and halts, scan-

ning the leftmost 1.

. – p.29/32

Exercise
Design a TM that, started scanning the leftmost
1 of an unbroken block of 1’s on an otherwise
blank tape, eventually halts, scanning a square
on an otherwise blank tape, where the square
contains a blank or a 1 depending on whether
there were an even or an odd number of strokes
in the original block.

Hint: recall the parity-checker DFA.

. – p.30/32

Exercise
Design a TM that will do the following. Given a

tape containing a block of n strokes, followed by a

blank, followed by a block of m strokes, and oth-

erwise blank, if the machine is started scanning

the leftmost 1 on the tape, it will eventually halt

leaving a block of m− n strokes if m ≥ n or n−m

strokes if n ≥ m, scanning the leftmost stroke on

the tape if any stroke is left.

. – p.31/32

Generalized TM’s
One could allow

more than two tape symbols,

replace the tape by a rectangular grid,

use several heads, several tapes, etc. . .

Turing’s thesis implies that no generalization will

enlarge the class of functions computable. This

bold claim turns out to be true for the cases

above.

. – p.32/32

	
	Does this program exist?
	Does this program exist?
	A helper function
		exttt {maybeHelloWorld}
		exttt {maybeHelloWorld}
		exttt {test2}
	
	Motivation
	Computable functions
	Turing's thesis
	Turing machine
	Configurations of a Turing Machine
	Representation of configurations
	Actions of the tape head
	Formal definition of a Turing machine
	How a TM operates
	Transition table
	Example: doubling the number of 1s
	Some functions computable by TM's
	Functions computable by TM's
	Representing natural numbers
	Standard initial configurations
	Halting configurations
	Standard final configurations
	Definition of Turing computability
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Generalized TM's

