
Context-free grammars and
languages

. – p.1/36

Motivation
It turns out that many important languages,
e.g. programming languages, cannot be
described by finite automata/regular
expressions.

To describe such languages, we shall
introduce context-free grammars (CFG’s).

. – p.2/36

Idea behind CFG’s
To generate strings by beginning with a start
symbol S and then apply rules that describe

how certain symbols may be replaced with other

strings.

. – p.3/36

Context-free
grammar: definition

Definition. A context-free grammar
G = (N, Σ, P, S) consists of

a finite set N of non-terminal symbols;

a finite set Σ of terminal symbols not in N ;

a finite set P of production rules of the form

u → v

where u is in N and v is a string in (Σ ∪ N)∗;

a start symbol S in N .
. – p.4/36

Example

The grammar G with non-terminal symbols
N = {S}, terminal symbols Σ = {a, b}, and
productions

S → aSb

S → ba.

Following a common practice, we use capital let-

ters for non-terminal symbols and small letters for

terminal symbols.

. – p.5/36

Example: integer
expressions

A simple form of integer expressions.

The non-terminal symbols are

symbol intended meaning
E expressions, e.g. (x + y) ∗ 3

I identifiers, e.g. x, y

C constants (here: natural numbers).

The alphabet Σ of terminal symbols is
{x, y, 0, 1, . . . , 9, ∗, +, (,)}.

. – p.6/36

Productions for
integer expressions

E → C C → 0 C → C0

E → I C → 1 C → C1

E → E + E
... ...

E → E ∗ E C → 9 C → C9

E → (E)

I → x

I → y

. – p.7/36

Language of a formal
grammar

Definition. The language of a formal grammar

G = (N, Σ, P, S), denoted as L(G), is defined as

all those strings over Σ that can be generated by

beginning with the start symbol S and then apply-

ing the productions P .

. – p.8/36

Parse trees
Every string w in a context-free language has
a parse tree.

The root of a parse tree is the start symbol S.

The leaves of a parse tree are the terminal
symbols that make up the string w.

The branches of the parse tree describe how
the productions are applied.

. – p.9/36

Exercise
Consider the grammar

S → A1B

A → 0A | ε

B → 0B | 1B | ε.

Give parse trees for the strings

1. 00101

2. 1001

3. 00011
. – p.10/36

Exercise
For the CFG G defined by the productions

S → aS |Sb | a | b,

prove by induction on the size of the parse tree

that the no string in language L(G) has ba as a

substring.

. – p.11/36

Exercises
Give a context-free grammar for the language of

all palindromes over the alphabet {a, b, c}. (A

palindrome is a word that is equal to the reversed

version of itself, e.g. “abba”, “bab”.)

. – p.12/36

Parsing

Finding a parse tree for a string is called
parsing. Software tools that do this are called
parsers.

A compiler must parse every program before
producing the executable code.

There are tools called “parser generators”
that turn CFG’s into parsers. One of them is
the famous YACC (“Yet Another Compiler
Compiler”).

Parsing is a science unto itself, and described
in detail in courses about compilers.

. – p.13/36

Ambiguity

A context-free grammar with more than one
parse tree for some expression is called
ambiguous.

Ambiguity is dangerous, because it can affect
the meaning of expressions; e.g. in the
expression b ∗ a + b, it matters whether ∗ has
precedence over + or vice versa.

To address this problem, parser generators
(like YACC) allow the language designer to
specify the operator precedence.

. – p.14/36

Exercise
Consider the grammar

S → aS | aSbS | ε.

Show that this grammar is ambiguous.

. – p.15/36

Exercise
Consider the grammar

S → A1B

A → 0A | ε

B → 0B | 1B | ε.

Show that this grammar is unambiguous.

. – p.16/36

Compact notation

More compact notation for productions:

E → I |C |E + E |E ∗ E | (E)

C → 0 |C0 | . . . | 9 |C9

I → x | y

. – p.17/36

Regular grammars

Next, we shall certain CFG’s called regular gram-
mars and show that they define the same lan-

guages as finite automata and regular expres-

sions.

. – p.18/36

Regular grammars:
definition

Definition. A CFG is called regular if every
production has one of the three forms below

A → aB

A → ε

where A and B are terminal symbols and a is a

non-terminal symbol.

. – p.19/36

Non-example

The grammar below is not regular because of the
b on the right of S.

S → aSb

S → ε.

. – p.20/36

From NFA to regular
grammar

For an NFA over alphabet Σ, we construct a
regular grammar G over alphabet Σ as follows:

1. The non-terminal symbols are the states of
the NFA.

2. The start symbol is the initial state of the NFA.

3. For every transition q
a

- q′ in the NFA,
introduce a production q → aq′.

4. For every final state q, add a production
q → ε.

. – p.21/36

Exercise
Turn some of the NFA’s in this lecture into regular

grammars.

. – p.22/36

From reg. grammar
to reg. expression

We I shall explain this in a number of steps.

First, we write the grammar in its compact
notation, e.g.

X → aY | bZ | ε (1)

Y → cX | dZ (2)

Z → eZ | fY (3).

. – p.23/36

From reg. grammar
to reg. expression

Next, we replace → by = and | by +, to make the
grammar look like an equation system:

X = aY + bZ + ε (1)

Y = cX + dZ (2)

Z = eZ + fY (3).

The trick is now to get a solution for the start sym-

bol X that does not rely on Y and Z.

. – p.24/36

From reg. grammar
to reg. expression

X = aY + bZ + ε (1)

Y = cX + dZ (2)

Z = eZ + fY (3).

We shall reduce the three equations above to
two equations as follows:

1. Find a solution for Z in terms of only X and Y .

2. Replace that solution for Z in equations (1)
and (2). (That yields equations for X and Y

that don’t rely on Z anymore.)
. – p.25/36

From reg. grammar
to reg. expression

How do we find a solution for

Z = eZ + fY (3)

that doesn’t rely on Z anymore? The idea is

“Z can produce an e and become Z again for a
number of times, but finally Z must become fY .”

Formally, the solution of Equation (3) is

Z = e∗fY.

. – p.26/36

From reg. grammar
to reg. expression

Generally, the solution of any equation of the
form

A = cA + B

is

A = c∗B.

. – p.27/36

From reg. grammar
to reg. expression

Next, we replace the solution

Z = e∗fY

in equations (1) and (2)

X = aY + bZ + ε (1)

Y = cX + dZ (2).

This yields

X = aY + be∗fY + ε (1′)

Y = cX + de∗fY (2′).
. – p.28/36

From reg. grammar
to reg. expression

Simplifying (1’) by using the distributivity law
yields

X = (a + be∗f)Y + ε (1′)

Now instead of three equations over X,Y, Z, we
have only two equations over X,Y :

X = (a + be∗f)Y + ε (1′)

Y = cX + de∗fY (2′).

. – p.29/36

From reg. grammar
to reg. expression

X = (a + be∗f)Y + ε (1′)

Y = cX + de∗fY (2′).

Next, we repeat our game of eliminating
non-terminals and find a solution for Y :

Y = (de∗f)∗cX.

. – p.30/36

From reg. grammar
to reg. expression

Using

Y = (de∗f)∗cX.

in (1’) yields.

X = (a + be∗f)(de∗f)∗cX + ε (1′′)

The solution of (1”) is

X = ((a + be∗f)(de∗f)∗c)∗ε = ((a + be∗f)(de∗f)∗c)∗

So we found a regular expression for the lan-

guage generated by X. . – p.31/36

Exercise
Consider the NFA given by the transition table
below.

0 1

→ X {X} {X,Y }

∗Y {Y } {Y }

1. Give a regular grammar for it.

2. Calculate a regular expression that describes
the language.

. – p.32/36

Exercise
Repeat the exercise for the NFA below.

0 1

→ ∗X {X} {Y }

Y {Y } {Z}

Z {Z} {X}

Also, describe the accepted language in English.

. – p.33/36

The big picture: final
version

See lecture for diagram.

Definition. Languages that are definable by reg-

ular expressions or regular grammars or finite au-

tomata) are called regular languages.

. – p.34/36

A non-regular
language

Proposition. The language

L = {anbn |n ≥ 1}

(for which we gave a CFG earlier) is not regular.

Proof. By contradiction. Suppose that L is regular. Then

there is a DFA A that accepts L. Let n be the number of states

of A. After reading the string an, the DFA must be in some state

that it already reached for am for some m < n. So if A accepts

anbn, then it also accepts ambn. But this contradicts the definition

of L.

. – p.35/36

Significance of the
example

That L is not regular has great practical
significance:

Recall that a string anbn can be seen as n

opening brackets followed by n closing
brackets.

Realistic programming languages contain
balanced brackets.

So it can be shown that realistic programming
languages are are not regular!

. – p.36/36

	
	Motivation
	Idea behind CFG's
	Context-free grammar: definition
	Example
	Example: integer expressions
	Productions for integer expressions
	Language of a formal grammar
	Parse trees
	Exercise
	Exercise
	Exercises
	Parsing
	Ambiguity
	Exercise
	Exercise
	Compact notation
	Regular grammars
	Regular grammars: definition
	Non-example
	From NFA to regular grammar
	Exercise
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	From reg. grammar to reg. expression
	Exercise
	Exercise
	The big picture: final version
	A non-regular language
	Significance of the example

