
Regular expressions ctd.
Formal languages

. – p.1/22

NFA for (0 + 1)∗1(0 + 1)

See blackboard.

. – p.2/22

Exercises
Convert each of the following regular
expressions to an ε-NFA:

1. 01∗

2. (0 + 1)01

3. 00(0 + 1)∗

. – p.3/22

The big picture (part
1/2)

Trivially, every DFA is an NFA, and every NFA
is an ε-NFA.

One goal is to show that all three types of
automata accept the same languages.

To show this, it suffices to show that for every
ε-NFA there is a DFA that accepts the same
language.

To that end, we shall use a modified
powerset construction.

. – p.4/22

The big picture (part
2/2)

We have also seen that every regular
expression is accepted by an ε-NFA.

We shall see later that for every FA there is a
regular expression describing the same
language.

So all four formalisms (DFA’s, NFA’s, ε-NFA’s,
and regular expressions) describe the same
languages.

. – p.5/22

From ε-NFA to DFA
Suppose that N is an ε-NFA. We shall now
study the modified powerset construction,
which produces a DFA D that accepts the
same language as N .

To that end, we need one auxiliary definition:
given a set S of states of N , the ε-closure
cl(S) of S is the set of states that are
reachable from S by any number of
ε-transitions.

. – p.6/22

From ε-NFA to DFA
The construction of D from N looks as the
powerset construction, except that we use cl:

The alphabet of D is that of N .

The states of D are sets of the form cl(S),
where S ∈ P (N).

The initial state qD
0

of D is cl{qN
0
}.

The final states of D are those sets of the
form cl(S) that contain a final state of N :

FD = {cl(S) |S ∩ FN 6= ∅}

. – p.7/22

From ε-NFA to DFA
The transition function of D arises from the
transition function of N as follows:

δD(S, a) =
⋃

q∈S

cl(δN (q, a))

That is, δD(S, a) is the set of all states of N

that are reachable from some state q ∈ S via
a, followed by any number of ε-transitions.

. – p.8/22

The simulation
proposition

Proposition. For every ε-NFA N, the DFA D

resulting from the modified powerset construction
accepts the same language.

Proof. One shows that every string w that

w ∈ L(D) ⇐⇒ w ∈ L(N).

The proof works by induction on the length of

w, and is only slighty more complicated than the

proof we have seen for the (ordinary) powerset

construction. . – p.9/22

Exercise
Consider the following ε-NFA.

ε a b c

→ p ∅ {p} {q} {r}

q {p} {q} {r} ∅

∗r {q} {r} ∅ {p}

1. Compute the ε-closure of each state.

2. Give all strings of length three or less
accepted by this automaton.

3. Convert the automaton to a DFA.
. – p.10/22

Exercise
Repeat the previous exercise for the following
ε-NFA.

ε a b c

→ p {q, r} ∅ {q} {r}

q ∅ {p} {r} {p, q}

∗r ∅ ∅ ∅ ∅

. – p.11/22

Exercise
In an earlier exercise, we converted the regular

expressions 01∗, (0 + 1)01, and 00(0 + 1)∗ into ε-

NFA’s. Convert each of those ε-NFA’s into a DFA.

. – p.12/22

Formal languages

. – p.13/22

Formal languages:
overview

A formal language (or simpy “language”) is a
set L of strings over some finite alphabet Σ.
That is, a subset L ⊆ Σ∗.

Finite automata and regular expressions
describe certain formal languages.

But many important formal languages, e.g.
programming languages, are not regular.

To describe describe formal languages, we
shall use formal grammars.

. – p.14/22

Formal grammars:
overview

Important for describing programming
languages.

Different kinds of formal grammars are
described by the the Chomsky hierarchy.

Among the simplest grammars in the
Chomsky hierarchy are the regular
grammars, which—as we shall
see—describe the same languages as
regular expressions.

. – p.15/22

Formal grammars:
basic idea

To generate strings by beginning with a start
symbol S and then apply rules that indicate how

certain combinations of symbols may be replaced

with other combinations of symbols.

. – p.16/22

Formal grammar:
definition

Definition. A formal grammar G = (N, Σ, P, S)
consists of

a finite set N of non-terminal symbols;

a finite set Σ of terminal symbols not in N ;

a finite set P of production rules of the form

u → v

where u and v are strings in (Σ ∪ N)∗ and u

contains at least one non-terminal symbol;

a start symbol S in N .
. – p.17/22

Example

The grammar G with non-terminal symbols
N = {S}, terminal symbols Σ = {a, b}, and
productions

S → aSb

S → ab.

Following a common practice, we use capital let-

ters for non-terminal symbols and small letters for

terminal symbols.

. – p.18/22

Example

Arithmetic expressions (simplified). N = {E, I},
Σ = {a, b, 0, 1, ∗, +, (,)}, S = E, and P as below:

E → I I → a

E → E + E I → b

E → E ∗ E I → Ia

E → (E) I → Ib

I → I0

I → I1

. – p.19/22

Example: compact
notation

More compact notation for productions:

E → I |E + E |E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

Think of E as “expressions” and I as “identifiers”.

. – p.20/22

Language of a formal
grammar

Definition. The language of a formal grammar

G = (N, Σ, P, S), denoted as L(G), is defined as

all those strings over Σ that can be generated by

starting with the start symbol S and then apply-

ing the production rules in P until no more non-

terminal symbols are present.

. – p.21/22

Exercises
The language of all palindromes over the alphabet

{a, b, c}. (A palindrome is a word of the form vw

such that w is the reverse of v, e.g. “abba”.)

. – p.22/22

	
	NFA for $(0+1)^*
1 (0+1)$
	Exercises
	The big picture (part 1/2)
	The big picture (part 2/2)
	From $epsilon $-NFA to DFA
	From $epsilon $-NFA to DFA
	From $epsilon $-NFA to DFA
	The simulation proposition
	Exercise
	Exercise
	Exercise
	
	Formal languages: overview
	Formal grammars: overview
	Formal grammars: basic idea
	Formal grammar: definition
	Example
	Example
	Example: compact notation
	Language of a formal grammar
	Exercises

