Simulation of an NFA by a DFA

Let $N = (Q_N, \Sigma, \delta_N, q_0^N, F_N)$ be a NFA. The equivalent DFA D is obtained from the so-called **powerset construction** (also called "subset construction".) We define

$$D = (Q_D, \Sigma, \delta_D, q_0^D, F_D),$$

where...

Simulation of an NFA by a DFA

- The alphabet of D is that of N.
- The states of D are sets of states of N:

$$Q_D = P(Q_N)$$

• The initial state q_0^D of D is $\{q_0^N\}$.

Simulation of an NFA by a DFA

The final states of D are those sets that contain the final state of N:

 $F_D = \{ S \in P(Q_N) \mid S \cap F_N \neq \emptyset \}$

The transition function of D arises from the transition function of N as follows:

$$\delta_D(S,a) = \bigcup_{q \in S} \delta_N(q,a)$$

That is, $\delta_D(S, a)$ is the set of all states of N that are reachable from some state q via a.

Proposition about the simulation

Proposition. For every NFA N, there is a DFA D such that L(D) = L(N).

The proof is in last week's handout.

Regular expressions

Regular expressions: motivation

- Useful for describing text patterns (with wildcards etc.).
- Used e.g. for text search in the text editor "Emacs" and in the Unix search command "grep".
- Used in compilers for recognizing tokens of programming languages, e.g. identifiers, floating-point-numbers, and so on. (See compilers lecture.)

First example

The regular expression

 $01^* + 10^*$

denotes the language consisting of all strings that are either a single 0 followed by any number of 1's, or a single 1 followed by any number of 0's.

Operations on languages

Before describing the regular-expression notation, we need to define the operations on languages that the operators of regular expressions represent.

Concatenation

- The concatenation $L \cdot L'$ (or just LL') of languages L and L' is defined to be the set of strings ww' where $w \in L$ and $w \in L'$.
- For example, if $L = \{001, 10, 111\}$ and $L' = \{\varepsilon, 001\}$, then $LL' = \{001, 10, 111, 001001, 10001, 111001\}$.

Self-concatenation

For a language L, we write L^n for

$$\underbrace{L \cdot L \cdots L}_{n \text{ times}}$$

- That is, L^n is the language that consists of strings $w_1w_2 \dots w_n$, where each w_i is in L.
- For example, if $L = \{\varepsilon, 001\}$, then $L^3 = \{\varepsilon, 001, 001001, 001001001\}$.
- Note that L¹ = L. The language L⁰ is defined to be {ε}.

Closure (Kleene-star)

The closure (or star or Kleene closure) L* of a language L is defined to be

$$L^* = \bigcup_{n \ge 0} L^n$$

- That is, L^* is the language that consists of strings $w_1w_2 \dots w_k$, where k is **any** non-negative integer and each w_i is in L.
- E.g. if L = {0, 11}, then L* consists of all strings such that the 1's come in pairs, e.g. 011, 11110, and ε, but not 01011 or 101.

Regular expressions: definition

Definition. The **regular expressions** over an alphabet Σ are defines as follows:

- Every symbol $a \in \Sigma$ is a regular expression.
- If E and E' are regular expressions, then so is E + E' and $E \cdot E'$. (We shall abbreviate the latter by EE'.)
- If E is a regular expressions, then so is E^* .
- The symbol ε is a regular expression.
- The symbol \emptyset is a regular expression.

Semantics of regular expressions

(Remark: "ser		mantics"	is	the
technical	term	for	"meaning".)	
Regular expression E		denoted language $L(E)$		
$a \in \Sigma$		$\{a\}$		
E + E'		$L(E) \cup L(E')$		
$E \cdot E'$		$L(E) \cdot L(E')$		
E^*		$(L(E))^*$		
${\mathcal E}$		$\{\varepsilon\}$		
Ø		the empty language, \emptyset		

- Suppose you want to search some messy text file for the street parts of addresses, e.g. "Milsom Street" or "Wells Road".
- Let [A Z] stand for $A + B + \cdots + Z$.
- Let [a z] stand for $a + b + \cdots + z$.
- You may want to use a regular expression like $[A-Z][a-z]^*$ (*Street*+*St*.+*Road*+*Rd*.+*Lane*)
- Expressions like this are accepted e.g. by the UNIX command grep, the EMACS text editor, and various other tools.

Exercises

Write regular expressions for the following languages:

- 1. The set of strings over alphabet $\{a, b, c\}$ with at least one a and at least one b.
- 2. The set of strings of 0's and 1's whose tenth symbol from the right end is 1.
- 3. The set of strings of 0's and 1's with at most on pair of consecutive 1's.

Exercises

Write regular expressions for the following languages:

- 1. The set of all strings of 0's and 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's.
- 2. The set of strings of 0's and 1's whose number of 0's is divisible by five.

Exercise

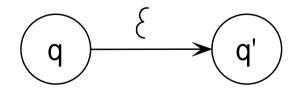
For any alphabet Σ , which are the subsets S of Σ^* such that the set S^* is finite?

Regular expressions and FA's: overview

- As we shall see, for every regular expression E, there is an NFA (and therefore also a DFA) that accepts the language defined by E.
- Tools that scan text for regular expressions work in this way.
- Also, for every DFA (and therefore for every NFA) A, there is a regular expression that denotes the language accepted by A.
- So finite automata and regular expressions are equivalent with respect to the definable languages.

NFA's with ε **-transitions**

- For simulating regular expressions, it is helpful to introduce NFA's with ε-transitions, or ε-NFA's in short.
- The only difference between ε-NFA's and NFA's is that the former can make spontaneous transitions, i.e. transitions that use up no input—technically speaking, the empty string ε.



NFA's with ε **-transitions**

More formally, an *ε*-NFA differs from an NFA only in that its transition function also accepts *ε* as an argument:

$$\delta: Q \times (\Sigma \cup \varepsilon) \to P(Q)$$

It can be shown by some modified powerset construction that for every ε-NFA there is a DFA accepting the same language (see Hopcroft/Motwani/Ullman).

From regular expressions to FA's

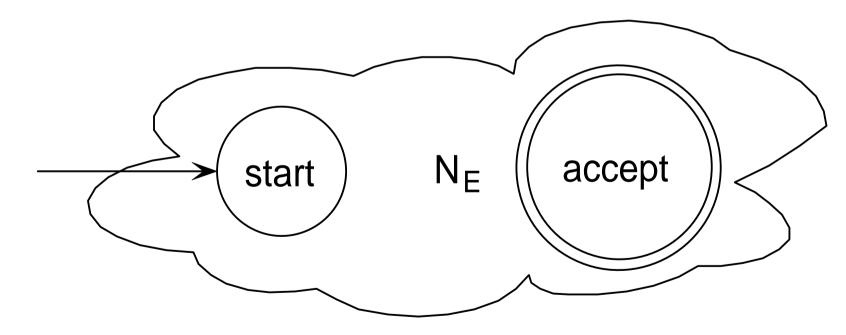
Formally, we shall prove:

Proposition. For every regular expression E, there is an ε -NFA N_E such that $L(N_E) = L(E)$.

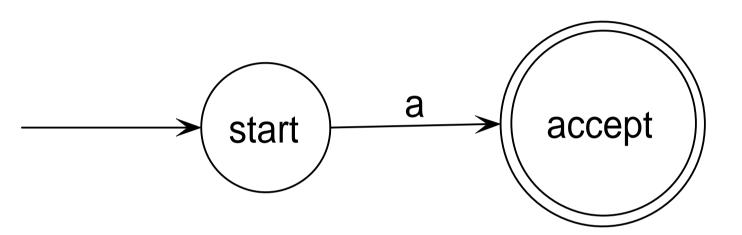
We shall see how this works on the next few slides.

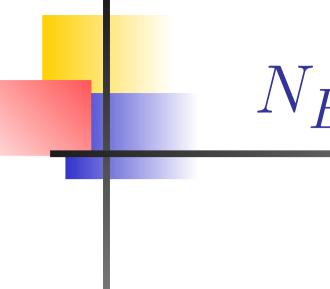
The ε -NFA N_E of a regular expression E

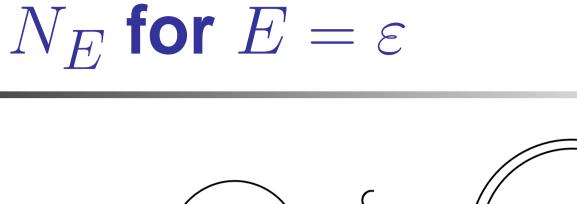
For every regular expression E, we shall build an ε -NFA N_E with exactly one accepting state, from which no further transitions are possible:

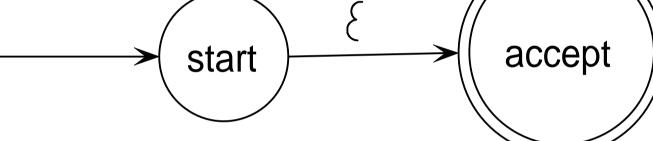


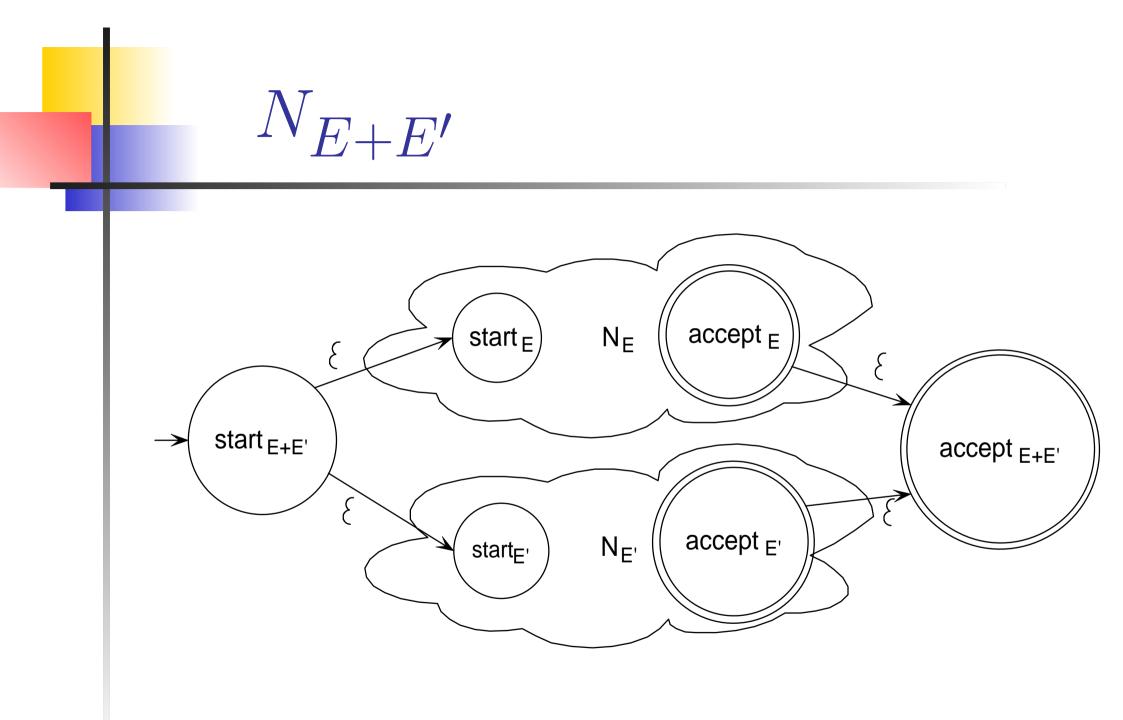
N_E for $E = a \in \Sigma$



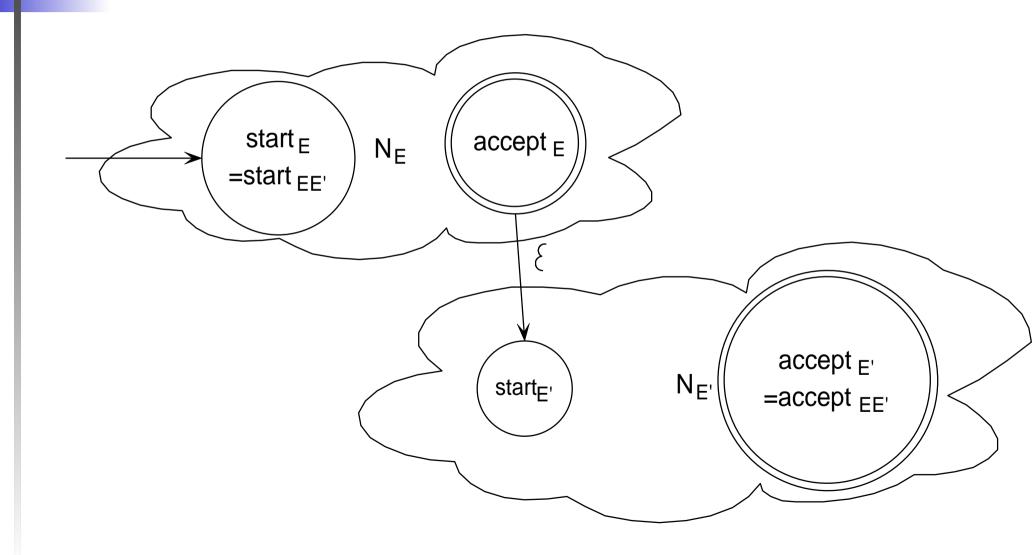


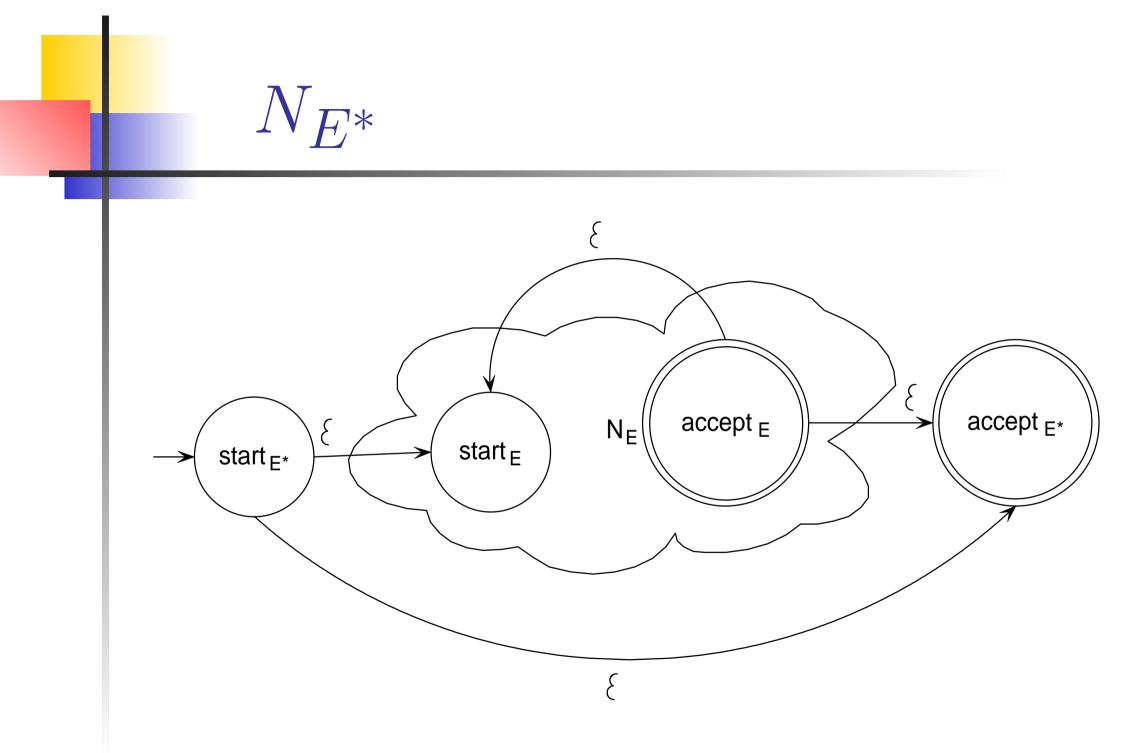


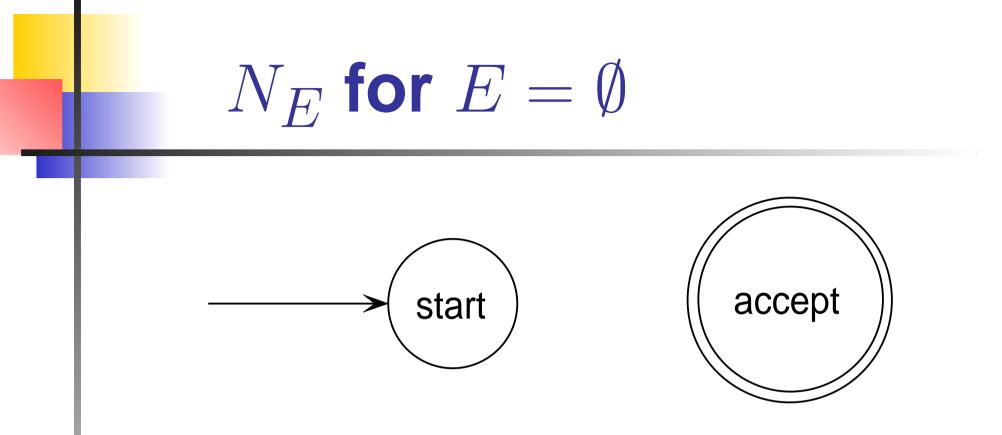




. – p.25/28







There is no way to get from the start state to the accepting state.