
Simulation of an NFA
by a DFA

Let N = (QN , Σ, δN , qN
0

, FN) be a NFA. The
equivalent DFA D is obtained from the so-called
powerset construction (also called “subset
construction”.) We define

D = (QD, Σ, δD, qD
0
, FD),

where. . .

. – p.1/28

Simulation of an NFA
by a DFA

The alphabet of D is that of N .

The states of D are sets of states of N :

QD = P (QN)

The initial state qD
0

of D is {qN
0
}.

. – p.2/28

Simulation of an NFA
by a DFA

The final states of D are those sets that
contain the final state of N :

FD = {S ∈ P (QN) |S ∩ FN 6= ∅}

The transition function of D arises from the
transition function of N as follows:

δD(S, a) =
⋃

q∈S

δN(q, a)

That is, δD(S, a) is the set of all states of N

that are reachable from some state q via a.
. – p.3/28

Proposition about the
simulation

Proposition. For every NFA N , there is a DFA D

such that L(D) = L(N).

The proof is in last week’s handout.

. – p.4/28

Regular expressions

. – p.5/28

Regular expressions:
motivation

Useful for describing text patterns (with
wildcards etc.).

Used e.g. for text search in the text editor
“Emacs” and in the Unix search command
“grep”.

Used in compilers for recognizing tokens of
programming languages, e.g. identifiers,
floating-point-numbers, and so on. (See
compilers lecture.)

. – p.6/28

First example

The regular expression

01∗ + 10∗

denotes the language consisting of all strings that

are either a single 0 followed by any number of

1’s, or a single 1 followed by any number of 0’s.

. – p.7/28

Operations on
languages

Before describing the regular-expression nota-

tion, we need to define the operations on lan-

guages that the operators of regular expressions

represent.

. – p.8/28

Concatenation
The concatenation L · L′ (or just LL′) of
languages L and L′ is defined to be the set of
strings ww′ where w ∈ L and w ∈ L′.

For example, if L = {001, 10, 111} and
L′ = {ε, 001}, then
LL′ = {001, 10, 111, 001001, 10001, 111001}.

. – p.9/28

Self-concatenation
For a language L, we write Ln for

L · L · · · · · L︸ ︷︷ ︸

n times

That is, Ln is the language that consists of
strings w1w2 . . . wn, where each wi is in L.

For example, if L = {ε, 001}, then
L3 = {ε, 001, 001001, 001001001}.

Note that L1 = L. The language L0 is defined
to be {ε}.

. – p.10/28

Closure (Kleene-star)
The closure (or star or Kleene closure) L∗

of a language L is defined to be

L∗ =
⋃

n≥0

Ln

That is, L∗ is the language that consists of
strings w1w2 . . . wk, where k is any
non-negative integer and each wi is in L.

E.g. if L = {0, 11}, then L∗ consists of all
strings such that the 1’s come in pairs, e.g.
011, 11110, and ε, but not 01011 or 101.

. – p.11/28

Regular expressions:
definition

Definition. The regular expressions over an
alphabet Σ are defines as follows:

Every symbol a ∈ Σ is a regular expression.

If E and E ′ are regular expressions, then so
is E + E ′ and E · E ′. (We shall abbreviate the
latter by EE ′.)

If E is a regular expressions, then so is E∗.

The symbol ε is a regular expression.

The symbol ∅ is a regular expression.

. – p.12/28

Semantics of regular
expressions

(Remark: “semantics” is the

technical term for “meaning”.)

Regular expression E denoted language L(E)

a ∈ Σ {a}

E + E ′ L(E) ∪ L(E ′)

E · E ′ L(E) · L(E ′)

E∗ (L(E))∗

ε {ε}

∅ the empty language, ∅

. – p.13/28

Example

Suppose you want to search some messy text
file for the street parts of addresses, e.g.
“Milsom Street” or “Wells Road”.

Let [A − Z] stand for A + B + · · · + Z.

Let [a − z] stand for a + b + · · · + z.

You may want to use a regular expression like

[A−Z][a−z]∗ (Street+St.+Road+Rd.+Lane)

Expressions like this are accepted e.g. by the
UNIX command grep, the EMACS text editor,
and various other tools.

. – p.14/28

Exercises
Write regular expressions for the following
languages:

1. The set of strings over alphabet {a, b, c} with
at least one a and at least one b.

2. The set of strings of 0’s and 1’s whose tenth
symbol from the right end is 1.

3. The set of strings of 0’s and 1’s with at most
on pair of consecutive 1’s.

. – p.15/28

Exercises
Write regular expressions for the following
languages:

1. The set of all strings of 0’s and 1’s such that
every pair of adjacent 0’s appears before any
pair of adjacent 1’s.

2. The set of strings of 0’s and 1’s whose
number of 0’s is divisible by five.

. – p.16/28

Exercise
For any alphabet Σ, which are the subsets S of Σ∗

such that the set S∗ is finite?

. – p.17/28

Regular expressions
and FA’s: overview

As we shall see, for every regular expression
E, there is an NFA (and therefore also a DFA)
that accepts the language defined by E.

Tools that scan text for regular expressions
work in this way.

Also, for every DFA (and therefore for every
NFA) A, there is a regular expression that
denotes the language accepted by A.

So finite automata and regular expressions
are equivalent with respect to the definable
languages.

. – p.18/28

NFA’s with
ε-transitions

For simulating regular expressions, it is
helpful to introduce NFA’s with ε-transitions,
or ε-NFA’s in short.

The only difference between ε-NFA’s and
NFA’s is that the former can make
spontaneous transitions, i.e. transitions that
use up no input—technically speaking, the
empty string ε.

q
 q'

. – p.19/28

NFA’s with
ε-transitions

More formally, an ε-NFA differs from an NFA
only in that its transition function also accepts
ε as an argument:

δ : Q × (Σ∪ ε) → P (Q)

It can be shown by some modified powerset
construction that for every ε-NFA there is a
DFA accepting the same language (see
Hopcroft/Motwani/Ullman).

. – p.20/28

From regular
expressions to FA’s

Formally, we shall prove:

Proposition. For every regular expression E,
there is an ε-NFA NE such that L(NE) = L(E).

We shall see how this works on the next few

slides.

. – p.21/28

The ε-NFA NE of a
regular expression E

For every regular expression E, we shall build an
ε-NFA NE with exactly one accepting state, from
which no further transitions are possible:

N
E
start
 accept

. – p.22/28

NE for E = a ∈ Σ

start
 accept
a

. – p.23/28

NE for E = ε

start
 accept

. – p.24/28

NE+E′

N
E'
start
E'

accept
 E'

N
E
start
 E
 accept
 E

start
 E+E'
 accept
 E+E'

. – p.25/28

NE·E′

N
E'
start
E'

accept
 E'

=accept
 EE'

N
E

start
 E

=start
 EE'

accept
 E

. – p.26/28

NE∗

N
E
start
 E

accept
 E*
accept
 E

start
 E*

. – p.27/28

NE for E = ∅

start
 accept

There is no way to get from the start state to the

accepting state.

. – p.28/28

	Simulation of an NFA by a DFA
	Simulation of an NFA by a DFA
	Simulation of an NFA by a DFA
	Proposition about the simulation
	
	Regular expressions: motivation
	First example
	Operations on languages
	Concatenation
	Self-concatenation
	Closure (Kleene-star)
	Regular expressions: definition
	Semantics of regular expressions
	Example
	Exercises
	Exercises
	Exercise
	Regular expressions and FA's: overview
	NFA's with $emptystring $-transitions
	NFA's with $emptystring $-transitions
	From regular expressions to FA's
	The $emptystring $-NFA N_E of a regular expression E
	N_E for $E=ain Alphabet $
	N_E for $E=emptystring $
	$N_{E+E'}$
	$N_{Ecdot E'}$
	N_{E^*}
	N_E for $E=emptyset $

