
Extended transition
function of a DFA

The next two pages describe the extended transi-

tion function of a DFA in a more detailed way than

Handout 3.

. – p.1/43

Formal approach to
accepted strings

We define the extended transition function δ̂. It
takes a state q and an input string w to the
resulting state. The definition proceeds by
induction over the length of w.

Induction basis (w has length 0): in this case,
w is the empty string, i.e. the string of length
0, for which we write ε. We define

δ̂(q, ε) = q.

. – p.2/43

Formal approach to
accepted strings

Induction step (from length l to length l + 1):
in this case, w, which has length l + 1, is of
the form va, where v is a string of length l and
a is a symbol. We define

δ̂(q, va) = δ(δ̂(q, v), a).

This works because, by induction hypothesis,
δ̂(q, v) is already defined.

. – p.3/43

Non-deterministic finite
automata (NFA’s)

. – p.4/43

Non-deterministic FA
(NFA)

An NFA is like a DFA, except that it can be in
several states at once.

This can be seen as the ability to guess
something about the input.

Useful for searching texts.

. – p.5/43

NFA: example

An NFA accepting all strings that end in 01:

1
q
1
q
0

0

 0,1

q
2
Start

It is non-deterministic because input 0 in state q0

can lead to both q0 and q1.

. – p.6/43

NFA example -
correction

The example on the next few pages is a corrected

version of the wrong example in Handout 3!

. – p.7/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

Suppose the input string is 100101. The NFA

starts in state q0, as indicated by the token.

. – p.8/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 100101. The NFA

reads the first symbol, 1. It remains in state q0.

. – p.9/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 00101. The NFA

reads the next symbol, 0. The resulting possible

states are q0 or q1.

. – p.10/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 0101. The NFA reads

the next symbol, 0. The resulting possible states

are still q0 or q1.

. – p.11/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 101. The NFA reads

the next symbol, 1. The resulting possible states

are q0 and q2. (Because q2 is a final states, this

means that the word so far, 1001, would be ac-

cepted.)
. – p.12/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 01. The NFA reads

the next symbol, 0. There is no transition for 0

from q2, so the token on q2 dies. The resulting

possible states are q0 or q1.

. – p.13/43

Using the NFA

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 1. The NFA reads

the next symbol, 1. The possible states are q0 and

q2. Because q2 is final, the NFA accepts the word,

100101.

. – p.14/43

Formal definition of
NFA

Definition. A non-deterministic finite
automaton (NFA) consists of

a finite set of states, often denoted Q,

a finite set Σ of input symbols,

a transition function δ : Q × Σ → P (Q),

a start state q0 ∈ Q, and

a set F ⊆ Q of final or accepting states.

. – p.15/43

Difference between
NFA and DFA

Suppose that q is a state and a is an input
symbol.

In a DFA, we have δ(q, a) ∈ Q, that is, δ(q, a)
is a state.

In a NFA, we have δ(q, a) ∈ P (Q), that is,
δ(q, a) is a set of states; it can be seen as
the possible states that can result from input a

in state q.

. – p.16/43

Formal approach to
accepted strings

We are aiming to describe the language L(A)
accepted by a NFA A.

This description is similar to the DFA case,
but a bit more sophisticated.

As in the DFA case, we first define the
extended transition function:
δ̂ : Q × Σ → P (Q).

That function δ̂ will be used to define L(A).

. – p.17/43

Example of δ̂ (input
string 100101)

1
q
1
q
0

0

 0,1

q
2
Start

Before reading any symbols, the set of possible

states is δ̂(q0, ε) = {q0}.

. – p.18/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 1) = {q0}.

. – p.19/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 10) = {q0, q1}.

. – p.20/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 100) = {q0, q1}.

. – p.21/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 1001) = {q0, q2}.

. – p.22/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 10010) = {q0, q1}.

. – p.23/43

Example of δ̂ (input
string: 100101)

1
q
1
q
0

0

 0,1

q
2
Start

We have δ̂(q0, 100101) = {q0, q2}. Because

{q0, q2} ∩ F = {q0, q2} ∩ {q2} = {q2} 6= ∅, the NFA

accepts.

. – p.24/43

Formal definition of δ̂

Definition. The extended transition function
δ̂ : Q × Σ → P (Q) of an NFA is defined
inductively as follows:

Induction basis (length 0):

δ̂(q, ε) = {q}

Induction step (from length l to length l + 1):

δ̂(q, va) =
⋃

q′∈δ̂(q,v)

δ(q′, a).

. – p.25/43

The language of an
NFA

Intuitively, the language of a DFA A is the set
of strings w that lead from the start state to an
accepting possible state.

Formally, the language L(A) accepted by the
FA A is defined as follows:

L(A) = {w | δ̂(q0, w) ∩ F 6= ∅}.

. – p.26/43

Exercise
Give NFA to accept the following languages.

1. The set of strings over an alphabet
{0, 1, . . . , 9} such that the final digit has
appeared before.

2. The set of strings over an alphabet
{0, 1, . . . , 9} such that the final digit has not
appeared before.

3. The set of strings of 0’s and 1’s such that
there are two 0’s separated by a number of
positions that is a multiple of 4.

. – p.27/43

DFA’s and NFA’s
Evidently, DFA’s are precisely those NFA’s for
which the set of states δ(q, a) has exactly one
element for all q and a.

So, trivially, every language accepted by a
DFA is also accepted by some NFA.

Is every language accepted by an NFA also
accepted by some DFA?

Surprisingly, the answer is “yes”!

. – p.28/43

Simulation of an NFA
by a DFA

Let N = (QN , Σ, δN , qN
0 , FN) be a NFA. The

equivalent DFA D is obtained from the so-called
powerset construction (also called “subset
construction”.) We define

D = (QD, Σ, δD, qD
0 , FD),

where. . .

. – p.29/43

Simulation of an NFA
by a DFA

The alphabet of D is that of N .

The states of D are sets of states of N :

QD = P (QN)

The initial state qD
0 of D is {qN

0 }.

. – p.30/43

Simulation of an NFA
by a DFA

The final states of D are those sets that
contain the final state of N :

FD = {S ∈ P (QN) |S ∩ FN 6= ∅}

The transition function of D arises from the
transition function of N as follows:

δD(S, a) =
⋃

q′∈S

δN(q′, a)

. – p.31/43

Example of powerset
construction: table
NFA DFA

 1

q
1

q
0

 0

 0,1

q
2

Start

0 1

∅ ∅ ∅

→ {q0} {q0, q1} {q0}

{q1} ∅ {q2}

∗{q2} ∅ ∅

{q0, q1} {q0, q1} {q0, q2}

∗{q0, q2} {q0, q1} {q0}

∗{q1, q2} ∅ {q2}

∗{q0, q1, q2} {q0, q1} {q0, q2}
. – p.32/43

Example of powerset
construction: graph

{q
0
,q
1
,q
2
}

{
}

{q
0
}

{
q
1
}

{q
0
,q
1
}

{
q
1
,q
2
}

{q
2
}

{q
0
,q
2
}

1

0

0,1

 0,1

 0

 1

1

0

 1

0

 0
 1
0

1

Transition graph of the resulting DFA.
. – p.33/43

Example of powerset
construction: graph

{q
0
}
 {q
0
,q
1
}
 {q
0
,q
2
}

1

0
 1

0

0

1

Optionally, we can remove the unreachable states

of the DFA.

. – p.34/43

Proposition about the
simulation

Proposition.For every NFA N , there is a DFA D

such that L(D) = L(N).

. – p.35/43

Proof of the
proposition (part 1/3)

First, we show that for every string w we have

δ̂D({q0}, w) = δ̂N(q0, w) (1)

We proceed by induction on the length l of w.

Base case (l = 0): in this case, w is the empty
string, ε. We have

δ̂D({q0}, ε) = {q0} (by defn. of δ̂D)

= δ̂N(q0, ε) (by defn. of δ̂N).

. – p.36/43

Proof of the
proposition (part 2/3)

Induction step (from l to l + 1): in this case, w,
which is of length l + 1, is of the form va,
where v is a string of length l and a is a
symbol. We have

δ̂D({q0}, va) = δD(δ̂D({q0}, v), a) (by defn. of δ̂D)

= δD(δ̂N(q0, v), a) (by indn. hypoth.)

=
⋃

q′∈δ̂N (q0,v)

δN(q′, a) (by defn. of δD)

= δ̂N(q0, va) (by defn. of δ̂N).
. – p.37/43

Proof of the
proposition (part 3/3)

Finally, we use Equation ??, which we just proved, to prove
that the languages of D and N are equal:

w ∈ L(D) ⇐⇒ δ̂D({q0}, w) ∈ FD (by defn. of L(D))

⇐⇒ δ̂N(q0, w) ∈ FD (by Equation ??)

⇐⇒ δ̂N(q0, w) ∩ FN 6= ∅ (by defn. of FD)

⇐⇒ w ∈ L(N) (by defn. of L(N)).

. – p.38/43

Languages accepted
by DFAs and NFAs

The proposition implies:

Corollary. A language L is accepted by some
DFA if and only if L is accepted by some NFA.

Proof. ⇒: this is the powerset construction we
have just seen.

⇐: this is true because every DFA is a special

case of an NFA, as observed earlier.

. – p.39/43

Warning

Let N be an NFA, and let D be the DFA that
arises from the powerset construction.

As we have seen, we have QD = P (QN).

So, if QN has size k, then the size of QD is 2k.

This exponential growth of the number of
states makes the powerset construction
unusable in practice.

It can be shown that removing unreachable
states does not prevent this exponential
growth.

. – p.40/43

Exercise
Convert the following NFA to a DFA:

0 1

→ p {p, q} {p}

q {r} {r}

r {s} {}

∗s {s} {s}.

. – p.41/43

Exercise
Convert the following NFA to a DFA:

0 1

→ p {q, s} {q}

∗q {r} {q, r}

r {s} {p}

∗s {} {p}.

. – p.42/43

Exercise
Convert the following NFA to a DFA:

0 1

→ p {p, q} {p}

q {r, s} {t}

r {p, r} {t}

∗s {} {}

∗t {} {}

Describe informally the language accepted by this

NFA accept? (Don’t worry if you need tutor’s help

for this.)
. – p.43/43

	Extended transition function of a DFA
	Formal approach to accepted strings
	Formal approach to accepted strings
	
	Non-deterministic FA (NFA)
	NFA: example
	NFA example - correction
	Using the NFA
	Using the NFA
	Using the NFA
	Using the NFA
	Using the NFA
	Using the NFA
	Using the NFA
	Formal definition of NFA
	Difference between NFA and DFA
	Formal approach to accepted strings
	Example of $hat delta $ (input string 100101)
	Example of $hat delta $ (input string: 100101)
	Example of $hat delta $ (input string: 100101)
	Example of $hat delta $ (input string: 100101)
	Example of $hat delta $ (input string: 100101)
	Example of $hat delta $ (input string: 100101)
	Example of $hat delta $ (input string: 100101)
	Formal definition of $hat delta $
	The language of an NFA
	Exercise
	DFA's and NFA's
	Simulation of an NFA by a DFA
	Simulation of an NFA by a DFA
	Simulation of an NFA by a DFA
	Example of powerset construction: table
	Example of powerset construction: graph
	Example of powerset construction: graph
	Proposition about the simulation
	Proof of the proposition (part 1/3)
	Proof of the proposition (part 2/3)
	Proof of the proposition (part 3/3)
	Languages accepted by DFAs and NFAs
	Warning
	Exercise
	Exercise
	Exercise

