
Summary of enumerability

. – p.1/42

Two ways of looking
at enumerability

A set A is enumerable if it is the range of a
function f : N → A from the natural numbers
to A.

Alternative description: a set A is enumerable
if it has an encoding, i.e. if there is a total
injective function c : A → N that sends every
element x of A to its code c(x).

. – p.2/42

Enumerability and
non-enumerability

Some important sets are enumerable: the
natural numbers (trivially), the integers, pairs
of integers, the rational numbers, strings,
computer programs, etc.

Some sets are not enumerable, as shown by
Cantor’s famous diagonal argument: the
powerset P (N) of the natural numbers,
and—most importantly—the functions
N → N .

. – p.3/42

Significance of
enumerability

Enumerability is important, because
enumerable sets can be represented on a
computer, and non-enumerable sets cannot.

Because computer programs are enumerable
and functions N → N are not, some functions
cannot be computable (i.e. represented by a
computer program).

. – p.4/42

Automata

. – p.5/42

Automata in
computer science

In computer science, and automaton is an
abstract computing machine.

“Abstract” means here that it need not exist in
physical form, but only as a
precisely-described idea.

. – p.6/42

Automata in this
lecture

Turing machines (1937) and abacus
machines (1960s): have all capabilities of
today’s computers. Used to study the
boundary between computable and
uncomputable.

Finite automata (also called finite state
machines, emerged during the 1940’s and
1950’s): originally introduced to model brain
functions, but they turned out to have
important applications in computer science.

. – p.7/42

Finite automata
We shall study finite automata first, because they

can be seen as a first step towards Turing ma-

chines and abacus machines.

. – p.8/42

Uses of finite
automata

Used in software for verifying all kinds of
systems with a finite number of states, such
as communication protocols

Used in software for scanning text, to find
certain patterns

Used in “Lexical analyzers” of compilers (to
turn program text into “tokens”, e.g.
identifiers, keywords, brackets, punctuation)

Part of Turing machines and abacus
machines

. – p.9/42

Motivating example
for finite automata

Next, we shall see how finite automata can be
used to model real-life systems, e.g. the
interactions between a Customer, a Store,
and a Bank. (This example is from the book
by Hopcroft/Motwani/Ullman.)

The automata describe the rules of
interaction, also called the communication
protocol.

They allow to answer questions about the
system that are hard or impossible to obtain
otherwise.

. – p.10/42

Communication
protocol

Store

Customer
 Bank

redeem

sh
ip

cancel

pa
y

transfer

Customer, Store, and Bank will be finite automata.

. – p.11/42

A close look at the
participants

a
 b
 d
 f

c
 g

2

1
 3
 4

pay
 redeem
 transfer

e

redeem
 transfer

ship
 ship
 ship

cancel

redeem
 transfer

Start
 Start

Start

Store

Bank
Customer

pay, cancel

. – p.12/42

Simulating the whole
system

Idea: running Customer, Store, and Bank “in
parallel”.

Initially, each automaton is in its start position.

The system can move on for every action that
is possible in each of the three automata.

. – p.13/42

The missing
irrelevant actions

Problem: Bank gets stuck during the pay
action, although paying is only between
Customer and Store.

Solution: we need to add a loop labeled “pay”
to state 1 of Bank.

More generally, we need loops for all such
“irrelevant” actions.

But illegal actions should remain impossible.
E.g. Bank should not allow “redeem” after
“cancel”.

. – p.14/42

Adding irrelevant
actions

a
 b
 d
 f

c
 g

2

1
 3
 4

pay
 redeem
 transfer

e

redeem
 transfer

ship
 ship
 ship

cancel

redeem
 transfer

Start
 Start

Start

Store

Bank
Customer

cancel
 pay, cancel
 pay, cancel
 pay, cancel

pay, cancel
 pay, cancel
 pay, cancel

ship, redeem, transfer,

pay, cancel

pay,

ship

pay, ship

pay, redeem,

cancel, ship

pay, redeem,

cancel, ship

. – p.15/42

Simulating the whole
system

Simulation by product automaton.

Its states are pairs (StoreState, BankState),
e.g. (a,1) or (c,3). (Because Customer has
only one state and allows every action, it can
be neglected.)

It has a transition
(StoreState,BankState)

action
- (StoreState′, BankState′)

whenever Store has a transition
StoreState

action
- StoreState′ and Bank has a

transition BankState
action

- BankState′.

. – p.16/42

Product automaton

p
 s
 s
 s

c
 c
 c
 c
 c
 c

p
 s
 s
 s

p
 s

s

s

p
 s
 s
 s

r
 r

 t
 t

r
 r

r
r

a
 b
 c
 d
 e
 f
 g

1

2

3

4

p

p
p
p
p

p
p
p
p
p

p
p

c

c

p,c

p,c
p,c
p,c
p,c

p,c

p,c
p,c
p,c
p,c
p,c
p,c

Start

c

. – p.17/42

Without unreachable
states

p
 s

c
 c

p
 s

s

s

 t
 t

r
r

a
 b
 c
 d
 e
 f
 g

1

2

3

4

p
p

p
p

p,c
p,c

p,c
p,c

Start

c

. – p.18/42

Usefulness for
protocol verification

We can now answer all kinds of interesting
questions, e.g. “Can it happen that Store
ships the product and never receives the
money transfer?”

Yes! If Customer has indicated to pay, but
sent a cancellation message to the Bank, we
are in state (b,2). If Store ships then, we
make a transition into (c,2), and the Store will
never receive a money transfer!

So store should never ship before redeeming.

. – p.19/42

Formal definition of
DFA’s

Definition. A deterministic finite automaton
(DFA) consists of

a finite set of states, often denoted Q,

a finite set Σ of input symbols,

a total transition function δ : Q × Σ → Q,

a start state q0 ∈ Q, and

a set F ⊆ Q of final or accepting states.

Remark: we require the transition function to be

total, but some people allow it to be partial.
. – p.20/42

Terminology and
intuitions

The transition graph we used before is an
informal presentation of the transition function

δ. We have q
 '
q

a

if δ(q, a) = q′.

“Deterministic” means that for every state q
and input symbol a, there is a unique (i.e.
exactly one) following state, δ(q, a).

Later, we shall also see non-deterministic
finite automata (NFA’s), where (q, a) can
have any number of following states.

FA’s are also called “finite state machines”.
. – p.21/42

Useful notations for
DFA’s

Transition graph, like that for Customer, Store,
or Bank.

Transition table, which is a tabular listing of
the δ function.

. – p.22/42

Transition graph:
example

q
3
q
2

q
1
q
0

1

1

0
 0
 0

1

1

 0

Start

Q = {q0, q1, q2, q3}, Σ = {0, 1}, δ(q3, 0) = q1 . . . ,

F = {q0}.

. – p.23/42

Meaning of the
transition graph

The nodes of the graph are the states.

The labels of the arrows are input symbols.

The labeled arrows describe the transition
function.

The node labeled “Start” is the start state q0.

The states with double circles are the final
states.

. – p.24/42

Transition table:
example

0 1

→ q0 q2 q0

∗q1 q1 q1

∗q2 q2 q1

Q = {q0, q1, q2},Σ = {0, 1}, δ(q0, 0) = q2, δ(q0, 1) =

q0 . . . , F = {q1, q2}.

. – p.25/42

Meaning of the
transition table

The symbols in the leftmost column are the
states.

The symbols in the top row are the input
symbols.

The symbols “inside” the table describe the
transition function.

The arrow in the leftmost column marks the
start symbol.

The symbol ∗ in the leftmost column marks
the final states.

. – p.26/42

How a DFA
processes strings

Let a1a2 · · · an be a string of input symbols.

Initially, the DFA is in its start state q0.

Let q be the state reached after the first i
symbols a1a2 · · · ai of the input string. Upon
reading the next symbol ai+i, the DFA makes
a transition into the new state δ(q, ai+1).

Repeated until the last symbol an.

The DFA said to accept the input string if the
state reached after the last symbol an is in the
set F of final states.

. – p.27/42

Accepted strings:
example

q
3
q
2

q
1
q
0

1

1

0
 0
 0

1

1

 0

Start

This DFA accepts 1010, but not 1110

It accepts those strings that have an even
number of 0’s and an even number of 1’s.

Therefore, we call this DFA “parity checker”.
. – p.28/42

Formal approach to
accepted strings

We define the extended transition function δ̂. It
takes a state q and an input string w to the
resulting state. The definition proceeds by
induction over the length of the input string.

Induction basis (length 0): δ̂(q, ε) = q. (The
greek letter ε stands for the empty string, i.e.
the word consisting of zero symbols.)

Induction step (from length n to length n + 1):
δ̂(q, wa) = δ(δ̂(q, w), a) (where w is an input
string of length n, and a an input symbol).

. – p.29/42

The language of a
DFA

Intuitively, the language of a DFA A is the set
of strings w that take the start state to one of
the accepting states.

Formally, the language L(A) accepted by the
DFA A is defined as follows:

L(A) = {w | δ̂(q0, w) ∈ F}.

. – p.30/42

Exercises
Give DFA’s accepting the following languages
over the alphabet {0, 1}. (Note that you can
choose between giving a transition table, a
transition graph, or a formal presentation of Q, Σ,
q0, δ, and F .)

1. The set of all strings ending in 00.

2. The set of all strings with two consecutive 0’s
(not necessarily at the end).

3. The set of strings with 011 as a substring.

. – p.31/42

Exercise
For the alphabet {a, b, c}, give a DFA accepting all

strings that have abc as a substring.

. – p.32/42

Exercises
(More advanced; do not worry if you need tutor’s
help to solve this.) Give DFA’s accepting the
following languages over the alphabet {0, 1}.

1. The set of all strings such that each block of
five consecutive symbols contains at least
two 0’s.

2. The set of all strings whose tenth symbol
from the right is a 1.

3. The set of strings such that the number of 0 is
divisible by five, and the number of 1’s is
divisible by three.

. – p.33/42

Exercise
Consider the DFA with the following transition
table:

0 1

→ A A B

∗B B A

(1) Informally describe the language accepted by

this DFA; (2)prove by induction on the length of an

input string that your description is correct. (Don’t

worry if you need tutor’s help for (2).)
. – p.34/42

Non-deterministic FA
(NFA)

An NFA is like a DFA, except that it can be in
several states at once.

This can be seen as the ability to guess
something about the input.

Useful for searching texts.

. – p.35/42

NFA: example

An NFA accepting all strings that end in 01:

1
q
1
q
0

0

 0,1

q
2
Start

It is non-deterministic because input 0 in state q0

can lead to both q0 and q1.

. – p.36/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

Suppose the input string is 00101. The NFA starts

in state q0, as indicated by the token.

. – p.37/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 00101. The NFA

reads the first symbol, 0. The resulting possible

states are q0 or q1.

. – p.38/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 0101. The NFA reads

the next symbol, 0. There is no transition for 0

from q1. So that token “dies”, leaving only q0 as a

possible state.

. – p.39/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 101. The NFA reads

the next symbol, 1, leaving only q0 as a possible

state.

. – p.40/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 01. The NFA reads

the next symbol, 0, and can be in state q0 or q1.

. – p.41/42

NFA: example

1
q
1
q
0

0

 0,1

q
2
Start

The remaining input string is 1. The NFA reads

the next symbol, 1. The possible states are q0 and

q2. Because one of the possible states is final, the

NFA accepts.

. – p.42/42

	
	Two ways of looking at enumerability
	Enumerability and non-enumerability
	Significance of enumerability
	
	Automata in computer science
	Automata in this lecture
	Finite automata
	Uses of finite automata
	Motivating example for finite automata
	Communication protocol
	A close look at the participants
	Simulating the whole system
	The missing irrelevant actions
	Adding irrelevant actions
	Simulating the whole system
	Product automaton
	Without unreachable states
	Usefulness for protocol verification
	Formal definition of DFA's
	Terminology and intuitions
	Useful notations for DFA's
	Transition graph: example
	Meaning of the transition graph
	Transition table: example
	Meaning of the transition table
	How a DFA processes strings
	Accepted strings: example
	Formal approach to accepted strings
	The language of a DFA
	Exercises
	Exercise
	Exercises
	Exercise
	Non-deterministic FA (NFA)
	NFA: example
	NFA: example
	NFA: example
	NFA: example
	NFA: example
	NFA: example
	NFA: example

