
Info about homepage
& tutorials

For slides, handouts, typo corrections, and
other information, see
http://www.cs.bath.ac.uk/˜cf/teaching

You can give the tutors your solutions of the
exercises and ask for feedback.

. – p.1/40

http://www.cs.bath.ac.uk/~cf/teaching

Enumerability
& diagonalization

. – p.2/40

Cantor’s Zig-Zag

Pairs of integers: Cantor’s Zig-Zag.
(1,2) (1,3)(1,1) (1,4) (1,5)

(5,1)

(4,1)

(3,1)

(2,1) (2,5)(2,4)(2,3)(2,2)

(3,5)(3,4)(3,3)(3,2)

(4,5)(4,4)(4,3)(4,2)

(5,5)(5,4)(5,3)(5,2)

...

...

...
 ...

f(1) = (1, 1), f(2) = (1, 2), f(3) = (2, 1), f(4) =

(1, 3), f(5) = (2, 2), . . .

. – p.3/40

Exercise
Show the following statements.

1. Every finite set is enumerable.

2. If a non-empty set A is enumerable, then it is
enumerable by a total function. Why does
this not work for the empty set?

. – p.4/40

Code numbers

Definition. Given an enumeration f of a set A, a
code numbers of an element a of A is a number
n such that f(n) = a.
Examples:

The code number of (1, 3) with respect to
Cantor’s Zig-Zag is 4.

For the enumeration 2, 2, 4, 4, 6, 6, . . . of the
even numbers, the code numbers of 4 are 2
and 3.

. – p.5/40

Encodings

Definition. An encoding of a set A is a total
injective function c : A → N into the natural
numbers. For a in A, the number c(a) is called
the code of a.

Proposition. A set A has an encoding if and
only if it is enumerable.

The proof of this proposition follows on the next
two slides.

. – p.6/40

From encoding to
enumeration

Let c : A → N be an encoding. Then an
enumeration f : N → A is given by

f(n) =

{

a if n = c(a)

undefined otherwise

f is well-defined (i.e. there is only one a for every
n) because c is injective.

. – p.7/40

From enumeration to
encoding

Let f : N → A be an enumeration. An encoding
c : A → N is given by

c(a) = some n such that f(n) is equal to a.

Because we need the function c to be an encod-

ing, it must be total and injective. It is total be-

cause f is surjective. It is injective because f can-

not send some n to two different values a and a′.

. – p.8/40

“Enumerable” vs.
“equinumerous”

Proposition. Every enumerable set A is either
finite or equinumerous with N .

Proof. Let A be a set which is enumerable but
not finite. Let c : A → N be an encoding of A. We
define a bijection b : N → A by

b(1) = the element of A with the smallest code

b(2) = the element of A with the 2nd smallest code

b(3) = the element of A with the 3rd smallest code
...

. – p.9/40

“Enumerable” vs.
“equinumerous”

Proposition. A set A is enumerable if and only
if it is finite or equinumerous with N .

Proof. The left-to-right direction is the result

on the previous slide. For the right-to-left direc-

tion, suppose first that A is equinumerous with N .

Then there is a bijection b : N → A. In particular,

A is the range of b, so A is enumerable. Second,

suppose that A is finite. Then by an earlier

exercise, A is enumerable.
. – p.10/40

Encoding pairs of
integers

As we have seen, Cantor’s Zig-Zag provides an
encoding of pairs of natural numbers.

Here is an alternative encoding:

cN×N(m,n) = pm · qn

where p and q are different primes. The total
function cN×N is injective owing to the
uniqueness of prime decomposition.

. – p.11/40

Encoding other kinds
of pairs

Proposition. If A and B are enumerable sets,
then so is the set A × B of pairs.

Proof. Let cA : A → N and cB : B → N be
encodings of A and B. An encoding
cA×B : A × B → N is given by

cA×B(a, b) = cN×N (cA(a), cB(b)),

where cN×N is some encoding of pairs of integers.

(cA×B is injective because cA, cB, and cN×N are.)

. – p.12/40

Exercises
Show the following statements:

1. If A, B, and C are enumerable sets, then the
set of triples

A × B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

is enumerable.

2. If A1, A2, . . . , Ak are enumerable sets, then
the set of k-tuples A1 × A2 × · · · × Ak is
enumerable.

. – p.13/40

Exercises
Show the following statements:

1. If A is enumerable and there is a surjective
function A → B, then B is enumerable.

2. If B is enumerable and there is a total
injective function A → B, then A is
enumerable.

Remark: these two statements are useful for

some of the following exercises.

. – p.14/40

Exercises
Show that the following sets are enumerable:

1. The set Q+ of positive rational numbers.

2. The set Q of all rational numbers.

3. The set A ∪ B for enumerable sets A and B.

4. The set A∗ of strings over an enumerable
alphabet A.

. – p.15/40

Exercises
Show that the following statements:

1. The set Pfin(N) of finite subsets of N is
enumerable.

2. The set Pfin(A) of finite subsets of an
arbitrary enumerable set A is enumerable.

. – p.16/40

The limits of
enumerability

So far, we have seen various examples of
enumerable sets.

Next, we shall see counterexamples.

This is important, because only enumerable
sets can be used in computations.

. – p.17/40

The set of sets of
natural numbers

Theorem.[Cantor’s Theorem] The set P (N)

(powerset of the natural numbers) is not enumer-

able.

. – p.18/40

Cantor’s diagonal
argument

The “diagonal argument” is Cantor’s celebrated
proof of his theorem. Here is the idea:

The proof proceeds by contradiction—that is, we assume
that P (N) is enumerable and show that this leads to a
contradiction.

So suppose that P (N) is enumerable. Then it has an enu-

meration s : N → P (N). To obtain the contradiction, we

define a set ∆(s) of natural numbers which cannot be in the

range of s.

. – p.19/40

Cantor’s diagonal
argument

The set ∆(s) is defined as follows: for each pos. integer n,

n ∈ ∆(s) if and only if n 6∈ s(n)

(Note the similarity wit Russell’s Paradox!) To show that
∆(s) is not in the range of s, we use again a proof by
contradiction. So suppose that ∆(s) is in the range of s,
that is, ∆(s) = s(m) for some m. Then

m ∈ ∆(s) if and only if m ∈ s(m)

But this is a contradiction to the definition of ∆.

q.e.d.

. – p.20/40

Idea behind the
diagonal argument

Think of the set s(i) of natural numbers as a
function si : N → {0, 1} such that

si(n) =

{

1 if n ∈ s(i)

0 otherwise

(si is called the characteristic function of the set

s(i).)

. – p.21/40

Idea behind the
diagonal argument

For example, if si is like in the table below

n 1 2 3 4 5 6 . . .

si(n) 0 1 0 1 0 1 . . .

it represents the set of even numbers.

. – p.22/40

Idea behind the
diagonal argument

n 1 2 3 4 5 . . .

s1(n) 0 0 1 0 . . .

s2(n) 0 0 1 0

s3(n) 1 0 1 0

s4(n) 1 0 0 1

s5(n) 0 0 1 1
... ...

. – p.23/40

Non-enumerability of
functions N → N

A similar argument shows that the functions from

natural numbers to natural numbers are not enu-

merable:

. – p.24/40

Non-enumerability of
functions N → N

. – p.25/40

Exercise
Show the following statements:

1. The set P (A) of all subsets of an infinite
enumerable set is non-enumerable.

2. Suppose that we have a programming
language, such that every program describes
a function N → N . Show that there must be
functions N → N that are described by no
program.

. – p.26/40

Automata

. – p.27/40

Automata in
computer science

In computer science:
automaton = abstract computing device, or

“machine”

. – p.28/40

Automata in this
lecture

Turing machines (1937) and abacus
machines (1960s): have all capabilities of
today’s computers. Used to study the
boundary between computable and
uncomputable.

Finite automata (also called finite state
machines, emerged during the 1940’s and
1950’s): useful e.g. text search, protocol
verification, compilers, descriptions of certain
formal grammars (N. Chomsky, 1950’s).

. – p.29/40

Finite automata
We shall study finite automata first, because they

can be seen as a first step towards Turing ma-

chines and abacus machines.

. – p.30/40

Uses of finite
automata

Used in software for verifying all kinds of
systems with a finite number of states, such
as communication protocols

Used in software for scanning text, to find
certain patterns

Used in “Lexical analyzers” of compilers (to
turn program text into “tokens”, e.g.
identifiers, keywords, brackets, punctuation)

Part of Turing machines and abacus
machines

. – p.31/40

Example: comm.
protocol

Store

Customer Bank
redeem

sh
ip

cancel

pa
y

transfer

Customer, Store, and Bank will be finite automata.

. – p.32/40

Communication
protocol

a b d f

c g

2

1 3 4

pay redeem transfer

e
redeem transfer

ship ship ship

cancel

redeem transfer
Start Start

Start

Store

BankCustomer

pay, cancel

. – p.33/40

Simulating the whole
system

Idea: running Customer, Store, and Bank “in
parallel”.

Initially, each automaton is in its start position.

The system can move on for every action that
is possible in each of the three automata.

. – p.34/40

The missing
irrelevant actions

Problem: Bank gets stuck during the pay
action, although paying is only between
Customer and Store.

Solution: we need to add a loop labeled “pay”
to state 1 of Bank.

More generally, we need loops for all such
irrelevant actions.

But illegal actions should remain impossible.
E.g. Bank should not allow “redeem” after
“cancel”.

. – p.35/40

Adding irrelevant
actions

. – p.36/40

Simulating the whole
system

Simulation by product automaton.

Its states are pairs (StoreState, BankState),
e.g. (a,1) or (c,3). (Because Customer has
only one state and allows every action, it can
be neglected.)

It has a transition
(StoreState,BankState)

action
- (StoreState′, BankState′)

whenever Store has a transition
StoreState

action
- StoreState′ and Bank has a

transition BankState
action

- BankState′.

. – p.37/40

Product automaton

p s s s

c c c c c c

p s s s

p s
s

s

p s s s

r r

 t t
r r

rr

a b c d e f g

1

2

3

4

p

pppp

ppppp

pp

c

c

p,c
p,cp,cp,cp,c

p,c

p,cp,cp,cp,cp,cp,c

Start

c

. – p.38/40

Without unreachable
states

p s

c c

p s

s

s

 t t

rr

a b c d e f g

1

2

3

4

pp

pp

p,cp,c

p,cp,c

Start

c

. – p.39/40

Usefulness for
protocol verification

We can now answer all kinds of interesting
questions, e.g. “Can it happen that Store
ships the product and never receives the
money transfer?”

Yes! If Customer has indicated to pay, but
sent a cancellation message to the Bank, we
are in state (b,2). If Store ships then, we
make a transition into (c,2), and the Store will
never receive a money transfer!

So store should never ship before redeeming.

. – p.40/40

	Info about homepage & tutorials
	
	Cantor's Zig-Zag
	Exercise
	Code numbers
	Encodings
	From encoding to enumeration
	From enumeration to encoding
		heword {Enumerable} vs. 	heword {equinumerous}
		heword {Enumerable} vs. 	heword {equinumerous}
	Encoding pairs of integers
	Encoding other kinds of pairs
	Exercises
	Exercises
	Exercises
	Exercises
	The limits of enumerability
	The set of sets of natural numbers
	Cantor's diagonal argument
	Cantor's diagonal argument
	Idea behind the diagonal argument
	Idea behind the diagonal argument
	Idea behind the diagonal argument
	Non-enumerability of functions $N	o N$
	Non-enumerability of functions $N	o N$
	Exercise
	
	Automata in computer science
	Automata in this lecture
	Finite automata
	Uses of finite automata
	Example: comm. protocol
	Communication protocol
	Simulating the whole system
	The missing irrelevant actions
	Adding irrelevant actions
	Simulating the whole system
	Product automaton
	Without unreachable states
	Usefulness for protocol verification

