
CM10020: Computability
and decidability

. – p.1/40



Dr. Carsten Führmann
http://www.cs.bath.ac.uk/˜cf

C.Fuhrmann@bath.ac.uk
Office: 1W 2.26 (soon to change)

. – p.2/40

http://www.cs.bath.ac.uk/~cf


Why this course?

The aims of this course are to

1. present some celebrated results about the
limits of what can be computed (greater part
of this course), and

2. introduce automata and formal languages,
which have numerous applications in practical
computer science (smaller part of this
course).

. – p.3/40



Book for
computability

Computability and Logic (4th ed.),
Boolos/Burgess/Jeffrey, Cambridge University
Press.

Stocked by Waterstone’s; also available in the li-

brary. Recommended purchase. (Comparatively

cheap; also contains valuable material about

logic, which may be useful in later years.)

. – p.4/40



Book for automata &
languages

Introduction to Automata Theory, Languages,
and Computation (2nd ed.),
Hopcroft/Motwani/Ullman, Addison Wesley.

Contains optional background reading (and many

other interesting topics); very expensive, and

therefore not stocked by Waterstone’s; if inter-

ested, see library, Amazon. . .

. – p.5/40



Handouts
There will be handouts at the beginning of
most lectures.

These handouts are identical with my slides.

I will also make them available (as ps and pdf
files) on my homepage
(http://www.cs.bath.ac.uk/˜cf).

My slides will cover all topics, but background
reading might help understanding.

. – p.6/40

http://www.cs.bath.ac.uk/~cf


Assessment
Assessed by a 2-hour written exam.

My handouts will contain exam-relevant
exercises, which will be discussed in the
weekly tutorials. These exercises will not be
assessed.

. – p.7/40



Tutorials
Five tutorials per week, each student
assigned to one of them (see first-year notice
board).

Starting Monday 16.

Two on Monday at 15:15, three on Friday at
14:15.

The tutor Dan Wiley won’t be there during the
week of the 16th; please attend other
tutorials.

. – p.8/40



Purpose of the
tutorials

The tutorials are there to help you understand
and prepare for the exam.

The exercises in my handouts will be
discussed in the tutorials.

Those exercises are similar, but not identical,
to some exam questions.

Tutors can give solutions, but only if they think
it’s appropriate. Try exercises before tutorials.

There will also be exam questions about the
story of the lecture (e.g. “explain what a
Turing machine is”). . – p.9/40



Outline
1. Introduction

2. Sets and functions (revision)

3. Enumerability

4. Finite automata and regular languages

5. The Chomsky-hierarchy—in particular, context-free grammars

6. Turing machines, Turing’s thesis

7. Uncomputability—in particular, the halting problem

8. Abacus machines

9. Primitive recursive functions, mu-recursive functions, Church’s thesis

10. Explanations why Turing machines, abacus machines, and mu-recursive
expressions describe the same notion of computation

11. Recursive and semirecursive sets

12. Lambda-calculus

. – p.10/40



Timeline

Weeks 1–7 lectures
Easter Break
Weeks 8–11 lectures
Week 12 office hours for questions

. – p.11/40



Sets (revision)
& enumerability

. – p.12/40



Enumerability:
overview

Goal of the course: present some celebrated
theorems about the limits of what can be
computed.

Computations involve integers (1, 2, 3, . . . ),
strings of text, . . .

It is important to understand the difference
between two kinds of infinite sets:
enumerable sets and non-enumerable
sets.

Before discussing enumerability, we’ll go
through a reminder of set theory.

. – p.13/40



Sets
A set is a collection of objects. Examples:

Days of the week: D =
{Monday, Tuesday, Wednesday, Thursday, Friday}.
Different notation: D = {x|x is a weekday}.

Positive integers (also called “natural
numbers”): N = {1, 2, 3, 4 . . .}.

Prime numbers: P = {2, 3, 5, 7, . . .}, or
P = {x|x is a prime number}.

Empty set: ∅ = {}.

Real numbers.
. – p.14/40



Sets
We write x ∈ S if x is in S. We say “x is an
element of S”.

We write x 6∈ S if x is not in S.

A set A is called a subset of a set B if every
element of A is an element of B. We write
A ⊆ B.

Two sets A and B are considered equal if they
have the same elements; we write A = B.

. – p.15/40



Russell’s paradox
(1901)

Things are not as simple as they seem:
suppose that R is the set of sets that are not
members of themselves, i.e.

R = {x|x 6∈ x}.

Is R ∈ R?

If the answer is “yes”, it follows that
not(R ∈ R), which is a contradiction.

If the answer is “no”, it follows that R ∈ R,
which is also a contradiction!

. – p.16/40



Escape from
Russell’s Paradox

Strictly speaking, we cannot write

{x|x has a certain property}.

We can only write

{x ∈ U |x has a certain property},

where U is another set.

However, paradoxes like Russell’s are rarely a
problem in everyday mathematics, and the
issue is usually ignored.

. – p.17/40



New sets from old
Union of A and B:

A ∪ B = {x |x ∈ A or x ∈ B}

Intersection of A and B:

A ∩ B = {x |x ∈ A and x ∈ B}

A less B:

A − B = {x ∈ A |x 6∈ B}

. – p.18/40



Product of sets
Product of A and B. This is the set of
ordered pairs whose first component is in A
and whose second component is in B:

A × B = {(x, y) |x ∈ A and y ∈ B}

For a non-negative integer k, we write Ak for
the k-fold product of A with itself, i.e. the lists
of length k whose components are in A:

Ak = {(x1, x2, . . . , xk) |x1 ∈ A, x2 ∈ A, . . . , xn ∈ A}

. – p.19/40



Lists over a set
The set A∗ of lists over a set A is

A∗ = {(a1, a2, . . . , ak) : k ≥ 0 and a1, . . . , ak ∈ A}.

In other words, A∗ is the word of k-tuples of
arbitrary length over A. Note that this
includes the empty tuple ().

Example. Text strings can be considered as lists.

For example, the set of strings over the Latin al-

phabet is {a, b, c, . . . , z}∗.
. – p.20/40



Powersets
Powerset of A. This is the set of all subsets
of A:

P (A) = {S |S ⊆ A}

Example: the powerset of {red, green, blue} is

{{},

{red}, {green}, {blue},

{green, blue}, {red, blue}, {red, green},

{red, green, blue}}.

. – p.21/40



Total functions

Definition. A total function f from a set A to a
set B is an assignment that sends each element
a of A to a unique element f(a) of B.

Example. Doubling a number is a function d

from N to N :

d(1) = 2

d(2) = 4

d(3) = 6

...
. – p.22/40



Functions

Definition. A function f from a set A to a set B
is an assignment that sends each element a of A
to a unique element f(a) of B or is undefined
on a.

Example. The assignment that halves even
numbers and is undefined on non-even numbers
is a partial function h from the set integers to the
set of integers:

h(1) = undefined h(2) = 1

h(3) = undefined h(4) = 2 . . .
. – p.23/40



Functions:
terminology

Warning: the terminology in most areas of
mathematics differs from the one in this
course. In mathematics, functions are often
assumed to be total by default. If they are not
total, they are called “partial functions”.

Our terminology differs because for
computable functions, being partial is the
normal (because programs can go into infinite
loops), and being total is special.

. – p.24/40



Composition of
functions

Definition. Let f : A → B and g : B → C be
functions. We define

g(f(a)) =

{

undefined if f(a) is undefined

g(b) if f(a) = b
.

The resulting function A → C is called the com-
position of g and f ; it is denoted by g ◦ f .

. – p.25/40



Domain of a function

Definition. The domain of a function f : A → B
is defined to be the set of all a in A such that f(a)
is defined.

So a function f : A → B is total if and only if its
domain is the whole of A.

Example. The domain of the halving function h

from the earlier slide is the set of even positive

integers.
. – p.26/40



Range of a function

Definition. The range of f is defined to be the

set of b in B that are of the form f(a) for some a

in A.

Example. The range of the doubling func-

tion d from the earlier slide is the set of even

positive integers.

. – p.27/40



Surjective functions

Definition. A function f : A → B is called
surjective if its range is the whole of B.

Example. A function of the kind below is not
surjective.

A B

. – p.28/40



Injective functions

Definition. A function f : A → B is called
injective (or “one-to-one”) if for every element b
of B there is at most one a such that b = f(a).

Example. A function of the kind below is not
injective.

A B

. – p.29/40



Bijective functions

Definition. A total function is called bijective if it
is both injective and surjective.

Example. Total functions of the kind below are
bijective.

A B

. – p.30/40



Exercise
Let f : A → B and g : B → C be functions. Show
that

1. If f and g are total, then so is g ◦ f ;

2. If f and g are injective, then so is g ◦ f ;

3. If f and g are surjective, then so is g ◦ f ;

4. If f and g are bijective, then so is g ◦ f .

. – p.31/40



Exercise
Show the following statements:

1. If there is a bijection A → B, there is also a
bijection B → A. (In this case, A and B are
called equinumerous, and we write A ' B.)

2. Every set is equinumerous with itself.

3. If A ' B and B ' C, then A ' C.

. – p.32/40



Exercise
Show that

1. The set of real numbers x with 0 < x < 1 is
equinumerous with the set R+ of positive real
numbers.

2. The set of real numbers x with 0 < x < 1 is
equinumerous with the set R of all real
numbers.

3. If A ' C and B ' D, then A × B ' C × D.

4. If A ' C are equinumerous, and B ' D, and
the intersections A ∩ B and C ∩ D are empty,
then A ∪ B ' C ∪ D. . – p.33/40



Exercise
1. Let s : A → B be a surjective function. Show

that there exists an injective total function
i : B → A such that s(i(b)) = b for all b ∈ B.

2. Let i : B → A be an injective total function.
Show that there exists a unique surjective
function s : A → B such that s(i(b)) = b for all
b ∈ B and i(s(a)) is either undefined or equal
to a for all a ∈ A.

Remark: this exercise foreshadows the connec-

tion between enumerations and encodings, which

we shall see later.
. – p.34/40



Arity

The argument of a function

f : A1 × A2 × · · · × Ak → B

is a list (x1, x2, . . . , xk), where xi ∈ Ai.

We say that “f takes k arguments”, or the
arity of f is k.

. – p.35/40



Enumerability:
informal description

A set is called enumerable (or “countable”) if
it is either finite or its elements can be written
as a list.

For example, the set of odd numbers is
enumerable. The list is 1, 3, 5, 7, 9, . . ..

“1, 3, 7, 9, . . . , 2, 4, 6, 8, . . .” is not a valid list,
and neither is “. . . ,−2,−1, 0, 1, 2, . . .”.

By “list” we mean that every element’s
position must be given by a positive integer.

. – p.36/40



Enumeration by a list

Consider the list of even natural numbers
2, 4, 6, 8, . . .

For a natural number i, let f(i) be the i-th
element of that list, i.e.

f(1) = 2, f(2) = 4, f(3) = 6, f(4) = 8, . . .

The set of even natural numbers is the range
of the function f : N → N

So the function f is an enumeration of the
set of even natural numbers.

. – p.37/40



Enumeration by a list
with holes

Let g : N → N be the function

g(n) =

{

n if n is even
undefined otherwise

.

The range of g is the set of even numbers.

The function g is another enumeration of the
set of even numbers.

“List with holes”: 2, . . . , 4, . . . , 6, . . .

. – p.38/40



Enumerability:
formal definition

Definition. A set A is called enumerable if it is
the range of a function f : N → A from the
positive integers to A (in other words, if there is a
surjective function N → A). We call f the
enumeration function of A.

Remark: the “list with holes” f is allowed to have

double occurrences, e.g. 2, 2, 4, 4, 6, 6, . . . is an

enumeration function for the set of even numbers.

. – p.39/40



Enumerability of the
integers

The set of integers. A simple enumeration is

1,−1, 2,−2, 3,−3, . . .

That is, the enumerating function is

f(1) = 1, f(2) = −1, f(3) = 2,

f(4) = −2, f(5) = 3, f(6) = −3, . . .

. – p.40/40


	
	
	Why this course?
	Book for computability
	Book for automata & languages
	Handouts
	Assessment
	Tutorials
	Purpose of the tutorials
	Outline
	Timeline
	
	Enumerability: overview
	Sets
	Sets
	Russell's paradox (1901)
	Escape from Russell's Paradox
	New sets from old
	Product of sets
	Lists over a set
	Powersets
	Total functions
	Functions
	Functions: terminology
	Composition of functions
	Domain of a function
	Range of a function
	Surjective functions
	Injective functions
	Bijective functions
	Exercise
	Exercise
	Exercise
	Exercise
	Arity
	Enumerability: informal description
	Enumeration by a list
	Enumeration by a list with holes
	Enumerability: formal definition
	Enumerability of the integers

