On the Geometry of Interaction for Classical Logic

(with David Pym)

Carsten Führmann, University of Bath

EPSRC project

"Semantics of classical proofs", also involving Hyland, Robinson, and Urban.

The non-determinism of cut-reduction

The proof in the middle (attributed to Lafont) reduces to both Φ_1 and Φ_2 :

Therefore, models that preserve meaning along cut reductions are trivial.

Flawed models

• CCC's with a dualizing object, i.e. an object \perp such that the map below has an inverse for every object A.

$$A \longrightarrow ((A \to \bot) \to \bot)$$

- Problem: such categories are boolean lattices.

- Translations into classical natural deduction.
 - Problem: admit only the left reduction in Lafont's example (call-by-value) or the right one (call-by-name).

Overview

1. Introduction of order-enriched models $\mathbf{C}[\![-]\!]$ such that

$$\Phi \preccurlyeq \Psi \implies \mathbf{C}\llbracket \Phi \rrbracket \le \mathbf{C}\llbracket \Psi \rrbracket.$$

- Examples: \mathbf{Rel}_{\otimes} , \mathbf{Rel}_{\oplus} , boolean algebras, proof nets.
- Soundness & completeness.
- 2. Main example: extended Gol.
 - Study of weakening and contraction.

Starting point: models of MLL

Symmetric linearly distributive categories for modelling MLL (Cockett & Seely).

- Symmetric monoidal product \otimes for modelling \wedge and left comma.
- Symmetric monoidal product \oplus for modelling \lor and right comma.
- Objects 0 and 1 for modelling \perp and \top .
- Optionally, maps as below for modelling \neg (yields *-autonomous categories).

$$\neg A \otimes A \longrightarrow 0 \qquad \qquad 1 \longrightarrow A \oplus \neg A.$$

Modelling weakening and contraction

• A type-indexed family of symmetric monoids

$$A \oplus A \xrightarrow{\nabla_A} A \xleftarrow{[]_A} 0$$

satisfying the evident coherence conditions.

• A type-indexed family of symmetric co-monoids

$$A \otimes A \xrightarrow{\Delta_A} A \xrightarrow{\langle\rangle_A} 1$$

satisfying the evident coherence conditions.

Example: associativity

The associativity law of the monoids corresponds to

Classical categories

Definition 1. A Dummett category is partial-order enriched symmetric linearly distributive category with symmetric monoids and comonoids such that

- 1. \otimes , and \oplus are monotonic in both arguments;
- 2. parametric versions of the laws below hold.

to model cut reductions involving C	to model cut reductions involving W
$f \circ \nabla \ \le \ \nabla \circ (f \oplus f)$	$f \circ [] \leq []$
$\Delta \circ f \ \leq \ (f \otimes f) \circ \Delta$	$\langle \rangle \circ f \leq \langle \rangle$

A classical category is a Dummett category with $\neg A \otimes A \longrightarrow 0$ and $1 \longrightarrow A \oplus \neg A$.

Soundness & completeness

• Sequent theories: judgments are of the form below, where Φ and Ψ are proofs of the same sequent.

 $\Phi\preccurlyeq \Psi$

- \preccurlyeq contains cut-reduction.
- An *interpretation* C[−] is a classical category C with an object for every atomic formula.
- A model is an interpretation $\mathbb{C}[\![-]\!]$ such that $\Phi \preccurlyeq \Psi$ implies $\mathbb{C}[\![\Phi]\!] \le \mathbb{C}[\![\Psi]\!]$.
- We have soundness and completeness in the evident sense.

The Gol construction

Definition 2. Given a traced symmetric monoidal category C, the category GoI(C) is defined as follows:

- Objects are pairs (A^+, A^-) of objects of C;
- A morphism $f : (A^+, A^-) \longrightarrow (B^+, B^-)$ of $GoI(\mathbf{C})$ is a morphism $f : A^+ \otimes B^- \longrightarrow A^- \otimes B^+$ of \mathbf{C} ;
- Composition is defined by symmetric feedback; informally,

The Gol category $Gol(\mathbf{C})$

Theorem 1. [Joyal/Street/Verity] GoI(C) is a compact closed category (= a symmetric linearly distributive category with \neg such that $\otimes = \oplus$ and 0 = 1).

The extended Gol construction

Theorem 2. [Hasegawa] If C is a traced compact Dummett category, then GoI(C) is a classical category.

(Generalized version of theorem in our LICS paper.)

Spelling out the extended GoI for \mathbf{Rel}_\oplus

- Let Φ be a proof of $\Gamma \vdash \Delta$.
- Let Γ^+ resp. Γ^- be the set of positive resp. negative occurrences of atomic formulæ in Γ . Same for Δ .
- The denotation of Φ is a quadruple of relations

• The order \leq of the classical category is component-wise \supseteq .

Finding denotations: examples

Weakening in $\operatorname{GoI}(\operatorname{\mathbf{Rel}}_\oplus)$

Weakening in $\operatorname{GoI}(\operatorname{\mathbf{Rel}}_\oplus)$

Weakening in $\operatorname{GoI}(\operatorname{\mathbf{Rel}}_\oplus)$

Contraction in $GoI(Rel_{\oplus})$

Contraction in $GoI(Rel_{\oplus})$

Directions

- More non-compact models. Games? (Pym/Ritter.)
- Extension to predicate logic (McKinley)