
Exam rules: update
I received an update on the exam rules. On the front of the

papers, it now says: “Full marks will be given for correct

answers to THREE questions. If you opt to answer more

than the specified number of questions, you should clearly

identify which of your answers you wish to have marked. In

cases where you have failed to identify the correct number

of answers, the marker is only obliged to consider the an-

swer in the order they appear up to the number of answers

required.”

. – p.1/14



The diagonal
argument, intuitively

The diagonal argument, in its most intuitive form, shows that for

every enumeration f1, f2, f3, . . . of functions N → A where the

set A is non-empty, there is a function g : N → A which is not in

that enumeration. This is shown by ensuring that g(n) differs

from fn(n) for every n, e.g.,

n 1 2 3 4 5 . . .

f1(n) 1⊥ 9 0 8 ⊥ . . .

f2(n) 0 ⊥0 1 0 3

f3(n) 1 4 9⊥ 2 ⊥

f4(n) 4 7 1 7⊥ 8

f5(n) 2 3 5 7 2⊥

...
...

. – p.2/14



The diagonal
argument, formally

Formally, the proof that there is a function g not in the list
f1, f2, f3, . . . goes as follows:
Let g : N → A be any function such that g(n) 6= fn(n) for all
n (such a g exists, because we have the choice as to
whether g(n) is undefined or an element of A). Claim: the
function g is not in the list f1, f2, f3, . . .. The proof proceeds
by contradiction. Suppose g = fk for some k. Then

fk(k) = g(k) because g = fk

6= fk(k) because g(n) 6= fn(n) for all n.

Contradiction. So the claim is proved.
. – p.3/14



Different uses of the
diagonal argument

1. To show that some set is not enumerable
(e.g. the set of functions N → N .)

2. To produce a function that is not contained in
some enumerable set. (e.g., to show that the
diagonal function is not computable.)

. – p.4/14



The diagonal
function

Let M1,M2,M3, . . . be an enumeration of Turing machines,
and let f1, f2, f3, . . . be the resulting enumeration of
Turing-computable functions. The diagonal function d is

d(n) =































undefined if fn(n) is defined, i.e. if

Mn halts on input n in a

standard final configuration

1 otherwise.

The function d is not in the list f1, f2, f3, . . ., because it is a

special case of a g with g(n) 6= fn(n) for all n.
. – p.5/14



Exercise
The n-th Fibonacci number fib(n) is determined by the
following conditions:

fib(0) = fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n),

so we get the sequence of pairs 1, 1, 2, 3, 5, 8, 13, 21, . . ..

Show that fib is primitive recursive. (Hint: consider the se-

quence (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), . . ., and recall

that we have primitive recursive functions for encoding and

decoding pairs.)
. – p.6/14



Solution (part 1/4)
The trouble is that fib has no straightforward definition by
primitive recursion

fib(0) = 1

fib(y + 1) = ?

because fib(y) may depend on fib(y) and fib(y − 1). To
address this issue, we introduce a helper function h such
that, essentially,

h(n) = (fib(n),fib(n + 1)).

. – p.7/14



Solution (part 2/4)
The point about h is that it can be defined by primitive
recursion, essentially as follows:

h(0) = (1, 1)

h(y + 1) = (right(h(y)), left(h(y)) + right(h(y))).

But h is strictly speaking not a primitive recursive function,
because primitive recursive functions must return natural
numbers (not pairs of natural numbers.) We address this
problem by using an encoding function pair : N × N → N

for pairs, e.g.,

pair(x, y) = 2x · 3y.
. – p.8/14



Solution (part 3/4)
As we have see, the decodings that corresponds to
pair(x, y) = 2x · 3y are

left(n) = lo(n, 2) and right(n) = lo(n, 3).

So the revised version of h is

h(0) = pair(1, 1)

h(y + 1) = pair(right(h(y)), left(h(y)) + right(h(y))).

Because the functions +, pair , left and right are primitive

recursive, and h is defined by primitive recursion from those,

h is primitive recursive. . – p.9/14



Solution (part 4/4)
Finally, let

fib(y) = first(h(y)).

In other words, fib = Cn[first , h]. So fib too is primitive re-

cursive.

. – p.10/14



Exercise
Show that the function gcd(x, y) that returns the

greatest common divisor of x and y is primitive

recursive. (You can use the primitive recursive

function divides introduced earlier.)

. – p.11/14



Solution (part 1/3)
The greatest common divisor gcd(x, y) of x and y is the
greatest i that divides both x and y — if such an i exists.
Let R by the relation defined by

R(x, y, i) iff divides(i, x) and divides(i, y).

where divides is the primitive-recursive relation from the

lecture that checks whether i divides x. Because divides

is primitive recursive, and primitive recursive relations are

closed under “and”, R too is primitive recursive.

. – p.12/14



Solution (part 2/3)
We have

gcd(x, y) =















the largest i if such a i exists

for which R(x, y, i)

? otherwise

The question mark comes into play only if x = y = 0, in

which case might as well choose ? = 0. Now the defini-

tion above looks like bounded maximization, except that the

bound is missing.

. – p.13/14



Solution (part 3/3)
Evidently, a divisor i of x and y can’t possibly be greater
than x + y. So x + y can be used as the bound. So gcd can
be defined by bounded maximization as follows:

gcd(x, y) =























the largest i ≤ x + y

for which R(x, y, i) if such a i exists

0 otherwise.

Because the relation R is primitive recursive, the function

gcd is primitive recursive.

. – p.14/14


	Exam rules: update
	The diagonal argument, intuitively
	The diagonal argument, formally
	Different uses of the diagonal argument
	The diagonal function
	Exercise
	Solution (part 1/4)
	Solution (part 2/4)
	Solution (part 3/4)
	Solution (part 4/4)
	Exercise
	Solution (part 1/3)
	Solution (part 2/3)
	Solution (part 3/3)

